ANALYTICITY IN THE BOUNDARY OF A PSEUDOCONVEX DOMAIN

ALAN V. NOELL

ABSTRACT. Let D be a bounded pseudoconvex domain with C^∞ boundary in \mathbb{C}^n, $A^\infty(D)$ the algebra of functions holomorphic in D and C^∞ up to the boundary, and M a compact real-analytic manifold in the boundary which is integral for the complex structure of the boundary and which has no complex tangent vectors. A necessary and sufficient condition that each element of $A^\infty(D)$ be real-analytic on M is that the germ of the complexification of M be in the boundary. Examples indicate that the quasi-analyticity of $A^\infty(D)$ along M is possible even in the absence of complex manifolds in the boundary.

1. Introduction. We call a smooth manifold M in the boundary of a domain an integral manifold if its tangent space at each point is contained in the maximal complex subspace of the tangent space of the boundary. M is totally real if it has no complex tangent vectors; more precisely, if J is the almost complex structure, the condition is that $T_p(M) \cap JT_p(M) = 0$ for all $p \in M$. A well-known theorem due to Stein states that holomorphic functions which are Lipschitz on D are twice as smooth when restricted to integral curves. (For the precise statement we refer the reader to [9, Corollary 2, p. 443].) In this note we investigate what conditions on D (or ∂D) imply high regularity of functions in $A^\infty(D)|M = \{ f|_M; f \in A^\infty(D) \}$; here M is a compact totally real real-analytic integral manifold in ∂D. Our results depend on the notion of a complexification of such a manifold. Suppose M has real dimension m. Locally (near $p \in M$) we take a real-analytic parametrization $\phi: V \rightarrow M$, where V is a neighborhood of 0 in \mathbb{R}^m and $\phi(0) = p$. The holomorphic extension Φ of ϕ to a neighborhood V' of 0 in \mathbb{C}^m is nonsingular since M is totally real; then $\Phi(V')$ is a complexification of M near p. Using the compactness of M we combine these to get a complex submanifold M' of a neighborhood W of M which has complex dimension m and which contains M as a submanifold. Details of this construction are in [10, p. 1274]. Note that, assuming the connectedness of $M' \cap W$, for each real-analytic function on M there are a neighborhood W' of M and a unique extension of the function to $H(W' \cap M')$. (Here, as elsewhere, $H(N)$ denotes the algebra of holomorphic functions on the (connected) complex manifold N.) Our main result can then be stated as follows.

THEOREM. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with C^∞ boundary, M a compact totally real real-analytic integral manifold in ∂D, and M' a complexification of M in W. Then each element of $A^\infty(D)|M$ is real-analytic if and only if there is a neighborhood $U \subseteq W$ of M so that $U \cap M' \subseteq \partial D$.

Received by the editors July 5, 1984.

1980 Mathematics Subject Classification. Primary 32A40; Secondary 32E25.

Key words and phrases. Pseudoconvex domain, integral manifold, complexification.

©1985 American Mathematical Society

0002-9939/85 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The proof of this theorem is in §2. We remark that obviously pseudoconvexity is required in the theorem; furthermore, some minimal smoothness of the boundary is necessary. In fact, Sibony constructed in [8, p. 973] a bounded pseudoconvex domain in \mathbb{C}^2 (with nonsmooth boundary) so that all bounded holomorphic functions on the domain extend to be holomorphic on a strictly larger domain.

Motivation for this work came from a study of interpolation in [6]; there an example is given of a class of domains for which $A^\infty(D)$ gains a good deal of smoothness upon restriction to an integral curve. In §3 we further discuss this example as a contrast to the theorem above. In particular, we give the following

EXAMPLE. There exists a convex domain $D \subseteq \mathbb{C}^2$ which is strongly pseudoconvex off of a line segment K so that $A^\infty(D)$ is quasi-analytic along a subinterval of K.

Our proof of the theorem depends on the identification of the spectrum of the algebra A^∞ given by Hakim and Sibony in [3, Theorem 1, p. 128]. Recall that $A^\infty(D)$ is a Fréchet algebra with the family of norms given by

$$P_N(f) = \sum_{|\alpha| \leq N} \frac{1}{\alpha!} \|D^\alpha f\|_{\partial D};$$

here, as elsewhere in this note, $\|g\|_X$ denotes the supremum of $|g|$ on X.

THEOREM (HAKIM-SIBONY). If D is a bounded pseudoconvex domain with C^∞ boundary, then the space of nonzero continuous complex homomorphisms of $A^\infty(D)$ can be identified with ∂D.

2. Proof of the theorem. Suppose that, for some neighborhood U of M, $U \cap M' \subseteq \partial D$. If $f \in A^\infty(D)$, then $\partial f \equiv 0$ in ∂D, so f is holomorphic on $U \cap M'$. It follows that f is real-analytic on M. Thus each element of $A^\infty(D)|M$ is real-analytic.

For the nontrivial part of the proof, we assume each element of $A^\infty(D)|M$ is real-analytic and fix a point $p \in M$. For each $f \in A^\infty(D)|M$ there is a neighborhood V of p (depending on f) so that f extends to be holomorphic on $V \cap M'$. Our first step is to remove the apparent dependence of V on f (cf. the argument in [3, p. 131]). Let $B(r)$ denote the open ball with center p and radius $r > 0$; let $X(r)$ be the Fréchet space of pairs (F, f) with $F \in H(B(r) \cap M')$, $f \in A^\infty(D)$, and $F = f$ on $B(r) \cap M$; and, let $\rho(r) : X(r) \to A^\infty(D)$ be the restriction map. We know that the union of the images of $\rho(r)$ over $1/r = 1, 2, 3, \ldots$ is $A^\infty(D)$, so, for some r_1, the image of $\rho(r_1)$ is of the second category in $A^\infty(D)$. By the open mapping theorem for Fréchet spaces (e.g., [7, p. 47]), $\rho(r_1)$ is surjective. Thus, if $V = B(r_1)$, each element of $A^\infty(D)|M$ extends to be holomorphic on $V \cap M'$.

The second step is to show that $V \cap M' \subseteq \partial D$. Fix a point $q \in V \cap M'$ and define a complex homomorphism $\chi : A^\infty(D) \to \mathbb{C}$ by $\chi(f) := F(q)$ if $f \in A^\infty(D)$ and F is an extension of f which is holomorphic on $V \cap M'$. Since the extension is unique, χ is well defined, and the following argument shows that χ is continuous: If $g \in A^\infty(D)$, then $|\chi(g)| \leq \|g\|_{\partial D}$, for otherwise $g - \chi(g)$ would be invertible in $A^\infty(D)$, an impossibility. Thus, if $f_j \to f$ in $A^\infty(D)$, from $\|f_j - f\|_{\partial D} \to 0$ it follows that $\chi(f_j) \to \chi(f)$. Hence, χ is continuous. By the aforementioned result of Hakim and Sibony, χ is given by evaluation at a point of ∂D, and it is clear that this point must be q. If follows that $q \in \partial D$ and so $V \cap M' \subseteq \partial D$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The third step is to show that, in fact, \(V \cap M' \subseteq \partial D \). For this we use the fact that there is a function \(\sigma \in C(\overline{D}) \) which is plurisubharmonic on \(D \) and satisfies \(\sigma < 0 \) on \(D \) while \(\sigma = 0 \) on \(\partial D \); this is a simple form of the theorem of Diederich and Fornaess [2, Theorem 1, p. 131] on bounded plurisubharmonic exhaustion functions. We claim that \(\sigma \) is actually plurisubharmonic on \(V \cap M' \). To see this, fix \(q \in V \cap M' \), let \(n \) be the outward unit normal to \(\partial D \) at \(q \), and let \(V' \subset V \) be a small neighborhood of \(q \). Since \(V \cap M' \subseteq \overline{D} \), if \(\varepsilon > 0 \) is small, then

\[
\{t - \varepsilon n; t \in V' \cap M'\} \subseteq D.
\]

Thus \(\sigma(t) \) is the uniform limit on \(V' \cap M' \) of the plurisubharmonic functions \(\sigma_e(t) := \sigma(t - \varepsilon n) \) as \(\varepsilon \to 0 \); it follows that \(\sigma \) is plurisubharmonic on \(V' \cap M' \). Since \(q \) was arbitrary, \(\sigma \) is plurisubharmonic on \(V \cap M' \), giving the claim. Now \(\sigma \) attains its maximum value at the (relative) interior point \(p \) of \(V \cap M' \); by the maximum principle, \(\sigma \equiv 0 \) on \(V \cap M' \). Thus \(V \cap M' \subseteq \partial D \).

We have shown that, for each \(p \in M \), there exists a neighborhood \(V \) of \(p \) so that \(V \cap M' \subseteq \partial D \). It follows that there is a neighborhood \(U \subseteq W \) of \(M \) so that \(U \cap M' \subseteq \partial D \).

REMARK. If \(A(D) := H(D) \cap C(\overline{D}) \), then it is easy to see that the assumption that \(U \cap M' \subseteq \partial D \) for a neighborhood \(U \) of \(M \) implies that each element of \(A(D) \setminus M \) is real-analytic. In fact, fixing \(f \in A(D) \) and \(q \in U \cap M' \), we get that \(f \) is locally near \(q \) the uniform limit on \(M' \) of holomorphic functions by arguing as for \(\sigma \) in step 3 above. It follows that \(f \mid M \) is real-analytic.

3. Example of quasi-analyticity in the boundary. For the example we choose two nonnegative even functions \(\phi \) and \(\chi \) in \(C^\infty(\mathbb{R}) \) so that

(a) each is strictly convex off its zero set;
(b) \(\chi^{-1}(0) = [-2, 2] \);
(c) \(\phi^{-1}(0) = \{0\} \); and
(d) \(\phi \) vanishes to infinite order at 0.

From [6, Example 4.1] we recall the domain \(D \), defined near \(K := [-2, 2] \times \{0\} \) in \(C^2 \), by

\[
D := \left\{(z, w); u + \chi(x) + \phi(y) + v^2 \left(1 + \frac{1}{100} |z|^2\right) < 0\right\};
\]

here we use the notation \(z = x + iy \), \(w = u + iv \). \(D \) is convex and strongly pseudoconvex off of \(K \), and \(K \) is an integral curve. We put \(L := [-1, 1] \times \{0\} \) and

\[
I_k = I_k(\phi) := \int_0^1 \phi'(t)t^{-k} dt \quad \text{for } k \geq 1.
\]

LEMMA 1. Given \(f \in A^\infty(D) \) there exists \(C > 0 \) so that

\[
\|\partial^k f / \partial x^k\|_L \leq C k! I_k \quad \text{for } k \geq 1.
\]

PROOF. Lemma 4.1 of [6] gives this estimate with \(L \) replaced by \(\{(0, 0)\} \), and one only needs to check that the estimate holds uniformly on \(L \). For the convenience of the reader, we sketch the proof. If \(k \geq 1 \) then

\[
\frac{\partial^k f}{\partial x^k}(a, 0) = -\int_0^1 \frac{d}{dt} \left[\frac{\partial^k f}{\partial x^k}(a, -\phi(t)) \right] dt + \frac{\partial^k f}{\partial x^k}(a, -\phi(1))
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
whenever $-1 \leq a \leq 1$. The integrand is bounded above by $k!\|\partial f/\partial w\|\overline{D}\phi'(t)t^{-k}$ because of the Cauchy estimates for $\partial f/\partial w$ on discs in D of the form

$$\{z; |z - a| \leq t\} \times \{-\phi(t)\};$$

the second term is similarly bounded above by $k!\|f\|\overline{D}$. This gives the desired estimate.

The lemma shows that we can get good regularity for $A^\infty(D)|L$ by choosing ϕ so that $I_k(\phi)$ grows slowly with k. The proof of the main theorem shows that we cannot choose ϕ so that, for some $C_1 > 0$,

$$(*) \quad I_k(\phi) \leq C_1^k \quad \text{for } k \geq 1.$$

Here is a more direct proof of this: Put

$$\psi(t) := \begin{cases} 0 & \text{if } t < 1, \\ \phi'(1/t) & \text{if } t \geq 1. \end{cases}$$

The holomorphic Fourier transform F of ψ defined by

$$F(z) := \int_{-\infty}^{\infty} \psi(t)e^{itz} dt \quad (z \in \mathbb{C})$$

would, if $(*)$ held, be an entire function of exponential type (a simple estimate); by the Paley-Wiener Theorem, F would be the Fourier transform of a function with compact support, so ψ would have compact support. Thus $(*)$ implies $\phi \equiv 0$ near 0, contradicting (c) above. In the following lemma we indicate one possible construction of a ϕ whose growth rate approximates $(*)$.

Lemma 2. Suppose $\{a_k\}$ is an unbounded increasing sequence with $a_1 \geq 1$. Then there exists a function ϕ of the required form with

$$I_k(\phi) \leq a_k^k \quad \text{for } k \geq 1.$$

Proof. Fix $\lambda \in C^\infty(\mathbb{R})$ so that $0 \leq \lambda \leq 1, \lambda(t) \equiv 0$ if $t \leq 1$, and $\lambda(t) \equiv 1$ if $t \geq 2$. If $j \geq 1$, let $c_j := \max\{|a_k^k\lambda(\lambda_k)(a_j t)|_\mathbb{R}; 0 \leq k \leq j\}$; then $1 \leq c_j < \infty$. We define

$$\psi(t) := \sum_{j=1}^{\infty} \lambda(a_j t) t^j / (c_j j^j) \quad \text{for } t \geq 0.$$

Then ψ is infinitely differentiable, and $\psi > 0$ if $t > 0$. A rather crude estimate gives that, for $k \geq 2$,

$$\int_0^1 \psi(t)t^{-k} dt = \sum_{j=1}^{\infty} \int_{1/a_j}^1 \lambda(a_j t) t^j / (c_j j^j) dt$$

$$\leq (k - 1)a_k^k + 1.$$

If we choose ϕ to be even and satisfy $\phi(0) = \phi'(0) = 0$ while $\phi''(t) = \psi(t)$ for $t \geq 0$, then integration by parts gives that, for some $C_1 > 0$, $I_k(\phi) \leq C_1 a_k^k$ for $k \geq 1$. Dividing ϕ by C_1 gives the desired result.

Example. Let $a_k = \log k$ for $k \geq 3$, and let ϕ be the corresponding function given in Lemma 2. By Lemma 1, if $f \in A^\infty(D)$, then there exists $C > 0$ so that

$$\|\partial^k f / \partial x^k\|_L \leq C(k \log k)^k \quad \text{for } k \geq 3.$$
Since $\sum 1/(k \log k) = \infty$, the Denjoy-Carleman Theorem (e.g., [4, Chapter IV, pp. 101 ff.]) implies that $A^\infty(D)|L$ is quasi-analytic. We remark that with the choice $\chi(2 + t) = \phi(t)$ (for $t \geq 0$) it is straightforward to check that $A^\infty(D)|K$ is quasi-analytic.

The above example gives a result about peak sets for $A^\infty(D)$. Recall that a closed set E in ∂D is a peak set for $A^\infty(D)$ if there exists a function $g \in A^\infty(D)$ with $g = 0$ on E while $\text{Re } g > 0$ on $D \setminus E$. K is a peak set for $A^\infty(D)$ (take $g = -w$), but no subset E of $(-1,1) \times \{0\}$ is a peak set for $A^\infty(D)$. In fact, if such a set E were a peak set with corresponding function g, the function $f = \exp\left(-1/\sqrt{g}\right) \in A^\infty(D)$ would vanish to infinite order on E. By the quasi-analyticity of $A^\infty(D)|L$, $f \equiv 0$ on L, so $E \supset L$, a contradiction. (A different proof of a related fact about peak sets in K is given in [5, Example 1.1].)

REMARK. In contrast to the above phenomena, $A(D)$ gains no regularity upon restriction to K in the above examples. More precisely, $A(D)|K = C(K)$, i.e., K is an interpolation set for $A(D)$. The proof is as follows: Since K is a peak set, a well-known result from the theory of uniform algebras (e.g., [1, Corollary 2.4.3, p. 104]) implies that $A(D)|K$ is uniformly closed in $C(K)$. In addition, the Stone-Weierstrass Theorem implies that holomorphic polynomials are dense in $C(K)$. Thus $A(D)|K = C(K)$.

REFERENCES

DEPARTMENT OF MATHEMATICS 253-37, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125