A REGULAR COUNTEREXAMPLE TO THE γ-SPACE CONJECTURE

RALPH FOX AND JACOB KOFNER

Abstract. This paper presents a completely regular counterexample to the conjecture that every γ-space is quasi-metrizable. Junnila has shown that developable γ-spaces are quasi-metrizable; this example shows that "developable" cannot be replaced by "quasi-developable". In the process we provide a method for constructing non-n-pretransitive spaces.

1. Introduction. The γ-space conjecture is the conjecture that every γ-space is quasi-metrizable. This conjecture has been proven for various classes of spaces, among them spaces with orthobases, developable spaces, and suborderable spaces [G-K2; J2; B-K1]. In [F] it is shown how to construct a counterexample \hat{X} to the γ-space conjecture from a γ-space X having a neighbournet U with the property that U_k is not a normal neighbournet for any $k \in \mathbb{N}$ (such a space X may be obtained by taking the topological sum of a sequence of γ-spaces X_n, where X_n is not n-pretransitive). However, even if X is completely regular, \hat{X} need not be regular at all. A sufficient condition for \hat{X} to be completely regular is that X be completely regular and that U_k be a clopen neighbournet for every $k \in \mathbb{N}$.

We present here a construction which begins with a quasi-metrizable space Y of cardinality at most c which is not $n^+\text{-pretransitive}$, and yields another quasi-metrizable space \hat{Y} of cardinality c that is not $(n + 1)^+\text{-pretransitive}$. If U is a neighbournet on Y such that U^{n^+} is not normal, then this construction yields a neighbournet \hat{U} on \hat{Y} such that $\hat{U}^{(n+1)^+}$ is not normal (see Lemma 1 below). This construction will allow us to inductively generate a sequence of spaces $X_n = \hat{X}_{n-1}$ with neighbournets $U_n = \hat{U}_{n-1}$ such that $U_n^{n^+}$ is not normal. If we take X to be the topological sum $X = \bigcup_{n=0}^{\infty} X_n$ and $U = \bigcup_{n=0}^{\infty} U_n$, we may then apply [F] to construct a γ-space \hat{X} which is not quasi-metrizable.

By starting from a suitable space X_0, we can inductively guarantee that X_n will be completely regular and that $U_n^{k^+}$ will be clopen for every $k \in \mathbb{N}$ (see Lemma 3 below). In this case, the counterexample \hat{X} will be completely regular, as intended.

2. Terminology. A quasi-metric is a generalized metric d satisfying the triangle inequality $d(x, z) \leq d(x, y) + d(y, z)$ but not necessarily the symmetry axiom $d(x, y) = d(y, x)$ [N; W]. A space X is said to be quasi-metrizable if it has a
compatible quasi-metric \(d\)—i.e. at each point \(x \in X\) the sets \(B_d(x; \varepsilon) = \{ y : d(x, y) < \varepsilon \}\), for \(\varepsilon > 0\), form a neighbourhood base.

We will use Junnila’s neighbournet notation \([J1]\). A *neighbournet* on a space \(X\) is a binary relation \(V\) such that \(V[x]\) is a neighbourhood of \(x\) for every \(x \in X\). A neighbournet \(V\) is called *open*, *closed* or *clopen* if every \(V[x]\) is open, closed or clopen, respectively. A sequence \(\langle V_n : n \in \mathbb{N} \rangle\) of neighbournets is called *basic* if at each point \(x \in X\) the sets \(V_n[x]\), for \(n \in \mathbb{N}\), form a neighbourhood base; and *normal* if \(V_{n+1}^2 \subseteq V_n\) for each \(n\). A neighbournet is said to be *normal* if it is a member of a normal sequence of neighbournets.

With this terminology, a \(T_1\) space is quasi-metrizable if and only if it has a normal basic sequence of neighbournets \([R; J1]\). Similarly, a \(T_1\) space is a \(\gamma\)-space if and only if it has a sequence \(\langle V_n : n \in \mathbb{N} \rangle\) of neighbournets such that the sequence \(\langle V_n^2 : n \in \mathbb{N} \rangle\) is basic \([H; LF; J1]\). Clearly every quasi-metrizable space is a \(\gamma\)-space.

If \(U\) is a binary relation on a space \(X\) we define a new relation \(U^+\) on \(X\) by \(U^+[x] = \cap \{ U[G] : G \text{ is a neighbourhood of } x \}\). If \(U\) is a neighbournet then \(U^n \subseteq (U^+)^n \subseteq U^{n+1}\) for each nonnegative integer \(n\) \([K1]\). We will write \(U^+\) for \((U^+)^+\).

A space \(X\) is called \(n\)-*pretransitive* \((n^+\text{-pretransitive})\) if whenever \(U\) is a neighbournet on \(X\) then \(U^n (U^+)\) is a normal neighbournet \([FL, p. 191, §6.21; cf. also K1]\). The \(n^+\)-pretransitivity property lies strictly between \(n\)-pretransitivity and \((n+1)\)-pretransitivity. Since \(U^0[x] = \{ x \}\), observe that a space is \(0\)-pretransitive \((0^+\text{-pretransitive})\) if and only if it is discrete (the arbitrary intersection of open sets is open).

The importance of \(n\)- and \(n^+\)-pretransitivity is that an \(n\)- or \(n^+\)-pretransitive \(\gamma\)-space is quasi-metrizable \([FL, p. 165, §7.19]\), and that almost all partial solutions to the \(\gamma\)-space conjecture have implicitly used this property: \([G; J2; K1; K2]\) have all shown that the spaces concerned were \(2\)- or \(2^+\)-pretransitive.

3. The construction of \(\hat{Y}\) and \(\hat{U}\). Let \(Y\) be a quasi-metrizable space and \(\langle V_n : n \in \mathbb{N} \rangle\) a normal basic sequence for \(Y\). The structure of \(\hat{Y}\) is as follows.

The points of \(\hat{Y}\) are the points of \(Y \times \mathbb{R}\). We presume that \(\mathbb{R}\) is partitioned into sets \(A\) and \(B\).

For each \(b \in B\) we declare \(Y \times \{ b \}\) to be a clopen subspace of \(\hat{Y}\) canonically homeomorphic to \(Y\). If \(\langle y, b \rangle \in Y \times \{ b \}\) we define \(\hat{V}_n[\langle y, b \rangle] = V_n[y] \times \{ b \}\).

We presume that \(Z\) is a chosen subset of \(Y \times A\); and for each \(\langle x, a \rangle \in Z\) that \(S(x, a)\) is a chosen subset of \(Y \times B\). We define the basic neighbourhoods of \(\langle x, a \rangle \in Z\) to be

\[
\hat{V}_n[\langle x, a \rangle] = \{ \langle x, a \rangle \} \cup \{ V_n[y] \times \{ b \} : \langle y, b \rangle \in S(x, a) \text{ and } |b - a| < 2^{-n} \}.
\]

All points \(\langle x, a \rangle \in X \times A\) which are not in \(Z\) are isolated; for these points we define \(\hat{V}_n[\langle x, a \rangle] = \{ \langle x, a \rangle \}\).

The structure of \(\hat{Y}\) as outlined above does not by itself guarantee that \(\hat{Y}\) will be Hausdorff, even if \(Y\) is. However, \(\hat{Y}\) will be \(T_1\), and so the Hausdorff property will be guaranteed if \(\hat{Y}\) is regular. It is not difficult to show that \(\langle \hat{V}_n : n \in \mathbb{N} \rangle\) is a normal basic sequence for \(\hat{Y}\); and hence \(\hat{Y}\) is quasi-metrizable.
The structure of \hat{U} is as follows. We presume that A is further partitioned into sets A_p ($p \in \mathbb{N}$), and that Z_p denotes the set of all points $\langle x, a \rangle \in Z$ with $a \in A_p$. Define \hat{U} by

$$
\hat{U}[\langle x, b \rangle] = U[x] \times \{b\} \quad \text{if } b \in B;
$$

$$
\hat{U}[\langle x, a \rangle] = \hat{V}_p[\langle x, a \rangle] \quad \text{if } \langle x, a \rangle \in Z_p, p \in \mathbb{N};
$$

$$
\hat{U}[\langle x, a \rangle] = \{(x, a)\} \quad \text{otherwise}.
$$

Observe that if $\langle x, a \rangle \in Z$, then

$$
\hat{U}^\ast[\langle x, a \rangle] = \hat{U}^\ast[\langle x, a \rangle] \cup \bigcap_{k=1}^\infty \bigcup \{U^n \circ V_k[y] \times \{b\} : \langle y, b \rangle \in S(x, a) \text{ and } |b - a| < 2^{-k}\}
$$

Note that the construction of \hat{Y} and \hat{U} depends on the choices made of $A = \bigcup_{p=1}^\infty A_p$, B, Z, and $S(x, a)$ for each $\langle x, a \rangle \in Z$. We will elaborate later on how these choices are to be made. The lemmas below discuss the properties required of \hat{Y} and \hat{U}.

Lemma 1. Suppose that U^{n+1} is not a normal neighbournet on Y. If \hat{Y} is constructed so that

(I) B is a dense Baire subset of \mathbb{R};

(II) if E is a subset of $Y \times B$, and the canonical projection of E onto B is somewhere dense in \mathbb{R}, then for every $p \in \mathbb{N}$ there is a point $\langle x, a \rangle \in Z_p$ such that $\langle x, a \rangle \in \text{cl}(E \cap S(x, a))$; and

(III) for each $\langle x, a \rangle \in Z$ and each $b \in B$ there is at most one point of $S(x, a)$ in $Y \times \{b\}$;

then \hat{U}^{n+1} will not be a normal neighbournet on \hat{Y}.

Proof. Let W be a normal neighbournet on \hat{Y}. To show that \hat{U}^{n+1} is not normal, we will show that $W^2 \not\subseteq \hat{U}^{n+1}$. Because U^n is not normal, we may find for each $b \in B$ a point $y_b \in Y$ such that $W[\langle y_b, b \rangle] \not\subseteq U^n[\langle y_b \rangle] \times \{b\}$. Let G_b be a neighbourhood of y_b in Y such that $W[\langle y_b, b \rangle] \not\subseteq U^n[G_b] \times \{b\}$.

By (I), we may find a fixed $p \in \mathbb{N}$ and a subset D of B which is somewhere dense in \mathbb{R} such that $V_p[y_b] \subseteq G_b$ for all $b \in D$.

By (II), there exists a point $\langle x, a \rangle \in Z_p$ such that $\langle x, a \rangle \in \text{cl}(\{\langle y_b, b \rangle : b \in D\} \cap S(x, a))$. Note that

$$
\hat{U}^{n+1}[\langle x, a \rangle] = \hat{U}^{n+1}[\langle x, a \rangle] = U^n \circ \hat{V}_p[\langle x, a \rangle] = \{(x, a)\} \cup \bigcup \{U^n \circ V_k[y] \times \{b\} : \langle y, b \rangle \in S(x, a) \text{ and } |b - a| < 2^{-p}\}.
$$

Choose some $\langle y_b, b \rangle \in W[\langle x, a \rangle] \cap S(x, a)$ so that $b \in D$. Then $U^n \circ V_p[y_b] \subseteq U^n[G_b]$ and hence we may find some point $\langle z, b \rangle \in W[\langle y_b, b \rangle \setminus U^n \circ V_p[y_b] \times \{b\}$. Thus $\langle z, b \rangle \in W^2[\langle x, a \rangle]$ and, by (III), $\langle z, b \rangle \not\in \hat{U}^{n+1}[\langle x, a \rangle] = \hat{U}^{n+1}[\langle x, a \rangle]$, as required.
Proposition 2. Suppose \(\langle x, a \rangle \in Z \) has a neighbourhood \(\hat{G} = \{ \langle x, a \rangle \} \cup \bigcup_{i=1}^{\infty} G_i \times \{ b_i \} \), where the \(G_i \) are clopen in \(Y \) and the \(b_i \) converge in \(R \) to \(a \). If \(\langle x, a \rangle \) is the only point of \(Z \) in \(Y \times \{ a \} \), then \(\hat{G} \) is clopen in \(\hat{Y} \).

Lemma 3. Suppose (a) each \(V_n \) is a clopen neighbournet on \(Y \); (b) \(U^k \) is a clopen neighbournet for each \(k \in \mathbb{N} \); and (c) \(U^k \circ V_n \) is a clopen neighbournet for each \(k, n \in \mathbb{N} \). If \(\hat{Y} \) is constructed so that

- (IV) for each \(a \in A \) there is at most one point of \(Z \) in \(Y \times \{ a \} \); and
- (V) for each \(\langle x, a \rangle \in Z \), \(S(x, a) \) is a sequence \(\{ \langle y_i, b_i \rangle : i \in \mathbb{N} \} \) where the \(b_i \) converge in \(R \) to \(a \);

then (a) each \(\hat{V}_n \) is a clopen neighbournet on \(\hat{Y} \); (b) \(\hat{U}^k \) is a clopen neighbournet for each \(k \in \mathbb{N} \); and (c) \(\hat{U}^k \circ \hat{V}_n \) is a clopen neighbournet for each \(k, n \in \mathbb{N} \).

Proof. It will suffice to show for each \(\langle x, a \rangle \in Z \) that \(\hat{V}_n \setminus \{ x, a \} \), \(\hat{U}^k \setminus \{ x, a \} \), and \(\hat{U}^k \circ \hat{V}_n \setminus \{ x, a \} \) are clopen. Suppose \(\langle x, a \rangle \in Z \). By (V), let \(S(x, a) = \{ \langle y_i, b_i \rangle : i \in \mathbb{N} \} \). Then

\[
\hat{V}_n \setminus \{ x, a \} = \{ \langle x, a \rangle \} \cup \{ V_n \setminus \{ y_i \} \times \{ b_i \} : |b_i - a| < 2^{-n} \},
\]

\[
\hat{U}^k \setminus \{ x, a \} = \{ \langle x, a \rangle \} \cup \{ U^{k-1} \circ V_p \setminus \{ y_i \} \times \{ b_i \} : |b_i - a| < 2^{-p} \},
\]

\[
\hat{U}^k \circ \hat{V}_n \setminus \{ x, a \} = \{ \langle x, a \rangle \} \cup \{ U^k \circ V_n \setminus \{ y_i \} \times \{ b_i \} : |b_i - a| < 2^{-n} \}
\]

\[
\cup \{ U^{k-1} \circ V_p \setminus \{ y_i \} \times \{ b_i \} : |b_j - a| < 2^{-p} \}.
\]

The required result now follows from Proposition 2, using (IV) and the assumptions (a) and (c). (Note that if \(k - 1 = 0 \) then \(U^{k-1} \circ V_p \circ V_p \) and so we would use (a) instead of (c) to guarantee that \(U^{k-1} \circ V_p \setminus \{ y_i \} \) was clopen.)

Now let us show that conditions (I) through (V) from Lemmas 1 and 3 may be met by suitably constructing \(\hat{Y} \) from a space \(Y \) of cardinality at most \(c \).

First, we may partition \(R \) into sets \(A \) and \(B \), where \(A \) has cardinality \(c \) on every open interval of \(R \) and \(B \) is dense and Baire in \(R \).

If the cardinality of \(Y \) is no more than \(c \), there will also be no more than \(c \) countable subsets \(E \) of \(Y \times B \). Then by a straightforward transfinite induction, choose for each countable \(E \subseteq Y \times B \) whose canonical projection onto \(B \) is dense in some interval \((c_1, c_2) \) in \(R \) and for each \(p \in \mathbb{N} \), a distinct real number \(a_{E_p} \in A \cap (c_1, c_2) \). Choose an arbitrary \(x_{E_p} \in Y \) and let \(S(x_{E_p}, a_{E_p}) \) be any sequence of points \(\{ y_i, b_i \} \in E \) where the \(b_i \) are distinct and converge in \(R \) to \(a_{E_p} \).

Let \(Z \) consist of all points \(\langle x_{E_p}, a_{E_p} \rangle \); and partition \(A \) into sets \(A_p (p \in \mathbb{N}) \) so that \(a_{E_p} \in A_p \). Then conditions (I) through (V) are met (note that it is sufficient to prove (II) for countable sets \(E \)).

4. The counterexample. To complete the construction of the counterexample \(\hat{X} \), all that remains to be done is to provide a suitable space \(X_0 \) to start off the induction. For this purpose we will choose the convergent sequence space \(\{ 2^{-k} : k \in \mathbb{N} \} \cup \{ 0 \} \). Observe that \(X_0 \) is not \(0^+ \)-pretransitive, and in fact \(U_0^{0^+} \) will not be a normal neighbournet no matter what \(U_0 \) is. To satisfy the inductive assumptions (a), (b) and (c) of Lemma 3 we may define the neighbounet \(U_0 \) and the normal basic sequence \(\{ V_n : n \in \mathbb{N} \} \) so that \(U_0[x] = X_0 \) and \(V_n[2^{-k}] = \{ 2^{-k} \} \); \(V_n[0] = \{ 2^{-k} : k > n \} \cup \{ 0 \} \).
The counterexample \bar{X} thereby produced will have the following properties. Note that the construction of \bar{Y} from Y and the construction of \bar{X} from X both preserve scatteredness, and that both increase the Cantor-Bendixson rank of the space by 1. Therefore \bar{X} will be scattered, and the Cantor-Bendixson rank of \bar{X} will be $\omega + 1$. Consequently, \bar{X} will be transitive (by transfinite induction and [FL, 6.16 and 6.17]), hereditarily weakly θ-refinable, and quasi-developable. Junnila has shown in [J2] that developable γ-spaces are quasi-metrizable; this demonstrates that developable cannot be weakened to quasi-developable.

We remark in passing that, with a modified construction of \bar{Y}, a counterexample \bar{X} can be constructed which has the above properties and which is in addition submetrizable—that is, it has normal G_δ-diagonal sequence.

Finally, we observe that the construction given in [F] and used here cannot produce a normal counterexample to the γ-space conjecture. In particular, if X is any T_1 space containing at least 2 points then \bar{X} will not be normal. For example, if X is the 2-point discrete space $\{0, 1\}$ then \bar{X} will consist of levels 1 through ω inclusive of a Cantor tree with the tree topology, a nonnormal space. To see this for a larger space X, consider a 2-point subset of X and the Cantor tree it generates in \bar{X}. This raises the question: Are normal γ-spaces quasi-metrizable?

ADDED IN PROOF. The answer to the last question is no; there exists a paracompact counterexample.

References

Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030

Current address (Ralph Fox): 634 South Titirangi Road, Auckland 1207, New Zealand