Structural instability of $\textrm {exp}(z)$
HTML articles powered by AMS MathViewer
- by Robert L. Devaney
- Proc. Amer. Math. Soc. 94 (1985), 545-548
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787910-2
- PDF | Request permission
Abstract:
The entire function $\operatorname {exp}\left ( z \right )$ has a Julia set equal to the whole plane. We show that there are complex $\lambda$’s near 1 such that $\lambda {e^z}$ has an attracting periodic orbit. Hence ${e^z}$ is not structurally stable.References
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167–171. MR 741732, DOI 10.1090/S0273-0979-1984-15253-4
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X
- Adrien Douady and John Hamal Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126 (French, with English summary). MR 651802
- P. Fatou, Sur l’itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337–370 (French). MR 1555220, DOI 10.1007/BF02559517 E. Ghys, L. Goldberg and D. Sullivan, On the measurable dynamics of $z \to {e^z}$, Ergodic Theory Dynamical Systems (to appear).
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394 G. Julia, Iteration des applications fonctionnelles, J. Math. Pures Appl. (1918), 47-245.
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254 R. Mañe, P. Sad and D. Sullivan, On the dynamics of rational maps (to appear).
- MichałMisiurewicz, On iterates of $e^{z}$, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 103–106. MR 627790, DOI 10.1017/s014338570000119x
- Mary Rees, Ergodic rational maps with dense critical point forward orbit, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 311–322. MR 766108, DOI 10.1017/S0143385700002467 D. Sullivan, Quasi-conformal homeomorphisms and dynamics. III (to appear).
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 545-548
- MSC: Primary 58F12; Secondary 30D05, 58F10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0787910-2
- MathSciNet review: 787910