A characterization of the invariant subspaces of direct sums of strictly cyclic algebras
HTML articles powered by AMS MathViewer
- by Erik Rosenthal
- Proc. Amer. Math. Soc. 94 (1985), 624-628
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792273-2
- PDF | Request permission
Abstract:
Two characterizations of the invariant subspace lattice of ${A^{(n)}}$ for a strictly cyclic operator algebra $A$ on a separable Hilbert space are proven.References
- William B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967), 635–647. MR 221293
- W. F. Donoghue Jr., The lattice of invariant subspaces of a completely continuous quasi-nilpotent transformation, Pacific J. Math. 7 (1957), 1031–1035. MR 92124
- Mary R. Embry, Maximal invariant subspaces of strictly cyclic operator algebras, Pacific J. Math. 49 (1973), 45–50. MR 336386
- Ciprian Foiaş and J. P. Williams, Some remarks on the Volterra operator, Proc. Amer. Math. Soc. 31 (1972), 177–184. MR 295126, DOI 10.1090/S0002-9939-1972-0295126-2
- Paul R. Halmos, Finite-dimensional vector spaces, The University Series in Undergraduate Mathematics, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958. 2nd ed. MR 0089819
- James H. Hedlund, Strongly strictly cyclic weighted shifts, Proc. Amer. Math. Soc. 57 (1976), no. 1, 119–121. MR 402530, DOI 10.1090/S0002-9939-1976-0402530-1
- Domingo A. Herrero, Transitive algebras of operators that contain a subalgebra of finite strict multiplicity, Rev. Un. Mat. Argentina 26 (1972/73), 77–84 (Spanish). MR 336387
- Domingo A. Herrero, Operator algebras of finite strict multiplicity, Indiana Univ. Math. J. 22 (1972/73), 13–24. MR 315468, DOI 10.1512/iumj.1972.22.22003
- Domingo A. Herrero and Alan Lambert, On strictly cyclic algebras, ${\scr P}$-algebras and reflexive operators, Trans. Amer. Math. Soc. 185 (1973), 229–235. MR 328619, DOI 10.1090/S0002-9947-1973-0328619-5
- Edward Kerlin and Alan Lambert, Strictly cyclic shifts on $l_{p}$, Acta Sci. Math. (Szeged) 35 (1973), 87–94. MR 328658 A. L. Lambert, Strictly cyclic operator algebras, Dissertation, Univ. of Michigan, 1970.
- Alan Lambert, Strictly cyclic weighted shifts, Proc. Amer. Math. Soc. 29 (1971), 331–336. MR 275213, DOI 10.1090/S0002-9939-1971-0275213-4
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664
- A. L. Lambert and T. R. Turner, The double commutant of invertibly weighted shifts, Duke Math. J. 39 (1972), 385–389. MR 310683
- N. K. Nikol′skiĭ, Invariant subspaces of weighted shift operators, Mat. Sb. (N.S.) 74 (116) (1967), 172–190 (Russian). MR 0229081
- Eric A. Nordgren, Closed operators commuting with a weighted shift, Proc. Amer. Math. Soc. 24 (1970), 424–428. MR 257786, DOI 10.1090/S0002-9939-1970-0257786-X
- Eric A. Nordgren, Invariant subspaces of a direct sum of weighted shifts, Pacific J. Math. 27 (1968), 587–598. MR 240657
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Erik J. Rosenthal, Power bounded strictly cyclic operators, Proc. Amer. Math. Soc. 72 (1978), no. 2, 276–280. MR 507322, DOI 10.1090/S0002-9939-1978-0507322-2
- Erik J. Rosenthal, A Jordan form for certain infinite-dimensional operators, Acta Sci. Math. (Szeged) 41 (1979), no. 3-4, 365–374. MR 555430
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 624-628
- MSC: Primary 47A15; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792273-2
- MathSciNet review: 792273