Three-space problem for locally uniformly rotund renormings of Banach spaces
HTML articles powered by AMS MathViewer
- by G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler
- Proc. Amer. Math. Soc. 94 (1985), 647-652
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792277-X
- PDF | Request permission
Abstract:
If $Y$ is a subspace of a real Banach space $X$ such that $X/Y$ admits an equivalent LUR norm, then $X$ admits an equivalent LUR (strictly convex) norm provided $Y$ also does.References
- G. A. Alexandroff, Locally uniformly convex equivalent norms in nonseparable Banach spaces, Ph. D. thesis, Ckarkov, 1980.
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- Per Enflo, Joram Lindenstrauss, and Gilles Pisier, On the “three space problem”, Math. Scand. 36 (1975), no. 2, 199–210. MR 383047, DOI 10.7146/math.scand.a-11571
- K. John and V. Zizler, On extension of rotund norms. II, Pacific J. Math. 82 (1979), no. 2, 451–455. MR 551701
- W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230. MR 417760, DOI 10.1007/BF02882239
- N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30. MR 542869, DOI 10.1090/S0002-9947-1979-0542869-X
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $\ell _{1}$ and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81–105. MR 390720, DOI 10.4064/sm-54-1-81-105
- John Rainwater, Local uniform convexity of Day’s norm on $c_{0}(\Gamma )$, Proc. Amer. Math. Soc. 22 (1969), 335–339. MR 243325, DOI 10.1090/S0002-9939-1969-0243325-8 M. Talagrand, Renormages de quelques $\mathcal {C}(K)$ (to appear).
- S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1970/71), 173–180. MR 306873, DOI 10.4064/sm-37-2-173-180
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 647-652
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792277-X
- MathSciNet review: 792277