HIGH ORDER COEFFICIENT ESTIMATES
IN THE CLASS Σ

Y. J. LEUNG AND G. SCHOBER

Abstract. Estimates are given for the coefficients b_n of functions in the class Σ in terms of $\text{Re} \{ 1 - b_1 \}$. As a consequence, there is an explicit finite number λ such that $\text{Re} \{ \lambda b_1 - b_n \} \leq \lambda$.

Introduction. Let Σ be the class of functions $g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n}$ that are analytic and univalent for $|z| > 1$. The nonvanishing subclass Σ' consists of those functions $g \in \Sigma$ for which $g(z) \neq 0$, $|z| > 1$. Denote by S the familiar class of univalent analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the open unit disk. It is easy to see that f belongs to S if and only if $g(z) = 1/f(1/z)$ belongs to Σ'.

The function $\Psi(z) = z + 1/z$ is extremal for many problems in Σ and is closely related to the Koebe function $K(z) = z(1 - z)^{-2}$ in S. Its transform

$$k(z^{(n+1)/2})^{2A(n+1)} = z(1 + z^{-n-1})^{2A(n+1)}$$

is extremal for the coefficient problem $\max_{\Sigma} \text{Re} b_n$ for $n = 1$ and $n = 2$, but not for $n > 3$.

It was conjectured by W. E. Kirwan [3] that

$$(1) \quad \text{Re} \{ nb_1 - b_n \} \leq n \quad (n \geq 2)$$

is true for all functions in the class Σ. Equality always occurs for the function k. This conjecture is known (Garabedian and Schiffer [2]) to be true for $n = 2$ and $n = 3$.

In general, we shall consider the inequality

$$(2) \quad \text{Re} \{ \lambda b_1 - b_n \} \leq \lambda.$$

Our principal result is that this inequality holds in Σ for some finite positive λ depending on n, but not on g. If $\lambda' > \lambda$, then

$$\text{Re} \{ \lambda'b_1 - b_n \} = \text{Re} \{ \lambda b_1 - b_n \} + (\lambda' - \lambda) \text{Re} b_1 \leq \lambda + (\lambda' - \lambda) = \lambda';$$

that is, if (2) holds for some λ, then it holds for all $\lambda' > \lambda$ and equality with λ' occurs only for translations of the function k. The problem then becomes one of finding the least value λ for which (2) is true. It follows from the work in [3] that $\lambda = n$ is the least value for which inequality (2) holds when $n = 2$ or $n = 3$. We refer the reader to the articles [6,7] for further facts related to conjecture (1) and problem (2).
The inequality (2) is contained in the following theorem.

Theorem. If \(g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n} \) belongs to \(\Sigma \) and \(n \geq 2 \), then there exists a finite positive number \(\lambda \) such that

\[
|\text{Re} b_n| \leq \lambda \text{Re} \{ 1 - b_1 \}.
\]

In particular, we have \(\text{Re} \{ \lambda b_1 - b_n \} \leq \lambda \).

The number \(\lambda \) is given explicitly in formula (7). Afterwards, there is a section containing the numbers \(\lambda \) for \(n = 2, 3, 4, 5 \) and also simple estimates for \(\lambda \) that depend on \(n \).

Note that (3) may be interpreted as coefficient estimates in a neighborhood of the function \(k \). A generalization is stated as a concluding remark.

Proof of the theorem. Our proof is similar, but not identical, to that of R. N. Pederson [5] for a corresponding result in the class \(S \). In addition, we shall keep track of the constants involved.

To estimate the coefficients of \(g \in \Sigma \), we can assume without loss of generality that \(g \) is a slit mapping since such mappings are dense in \(\Sigma \). If \(w_0 \) is any value omitted by \(g \), then \(g - w_0 \) belongs to \(\Sigma' \) and we may associate with its reciprocal a function \(f \in S \), as in the introduction. The function \(f \) may be embedded (cf. [1, Chapter 3]) into a Loewner chain \(f(z, t) \) which satisfies a differential equation of the form

\[
\frac{df}{dt} = z \left[(1 + k z) / (1 - k z) \right] \frac{df}{dz}, \quad t > 0,
\]

where \(k \) is a piecewise continuous function of \(t \), \(|k| = 1 \), and \(f(z, 0) = f(z) \). In terms of \(g(z, t) = 1/f(z, t) \) the differential equation has the similar form

\[
\frac{dg}{dt} = z \left[(1 + \bar{k} z) / (1 - \bar{k} z) \right] \frac{dg}{dz}, \quad t > 0,
\]

where \(g(z, 0) = g(z) - w_0 \).

From (4) the coefficients of \(g(z, t) = e^{-t} \left[z + \sum_{n=0}^{\infty} b_n(t) z^{-n} \right] \) satisfy the differential equation

\[
b'_n(t) = (n + 1) b_n(t) + 2(n - 1) k(t) b_{n-1}(t) + \cdots + 2k^{n-1}(t) b_1(t) - 2k^n(t),
\]

at least for \(n \geq 1 \). Repeated integration gives an iterated integral representation for the coefficients \(b_n = b_n(0), n \geq 1 \), of \(g - w_0 \), hence of \(g \), in the following form:

\[
b_n = \Sigma (-1)^{m+1} 2^m \Gamma_{j_1j_2\cdots j_m} \int_0^\infty \cdots \int_{t_{m-1}}^\infty \kappa_1^{j_1} \kappa_2^{j_2} \cdots \kappa_m^{j_m} dt_1 \cdots dt_2 dt_{m-1},
\]

where \(\kappa_j = \kappa(t_j) e^{-t_j} \), \(\Gamma_j = 1 \), \(\Gamma_{j_1j_2\cdots j_m} = (j_2 + \cdots + j_m - 1)(j_3 + \cdots + j_m - 1) \cdots (j_m - 1) \), and the summation is over all positive integers \(j_1, j_2, \ldots, j_m \) with \(j_m \geq 2 \) and \(j_1 + j_2 + \cdots + j_m = n + 1 \). Of course, \(b_1 \) is simply \(2 j_0 \kappa(t) e^{-2t} dt \). The coefficient \(b_1 = 1 \) if and only if \(k^2 = 1 \).

Lemma 1. For \(j = 1, 2, \ldots, N \), let \(\theta_j \) be real and let \(\delta_j \) be an integer multiple of \(\pi \). Then we have the sharp inequality

\[
|\cos(\theta_1 + \theta_2 + \cdots + \theta_N) - \cos(\delta_1 + \delta_2 + \cdots + \delta_N)| \leq N \left[\sum_{j=1}^N |\cos \theta_j - \cos \delta_j| \right].
\]
Proof. If \(N = 1 \), the inequality is trivial; assume therefore that \(N \geq 2 \). Let
\[
\varphi(\theta_1, \ldots, \theta_N) = N^2 - N(\cos \theta_1 + \cdots + \cos \theta_N) + \cos(\theta_1 + \cdots + \theta_N) - 1.
\]
We shall show that \(\varphi \geq 0 \). If some \(\theta_j \) satisfies \(\cos \theta_j \leq 0 \), then
\[
\varphi \geq N^2 - N(N-1) - 1 - 1 = N - 2 \geq 0.
\]
Thus we may restrict the domain of \(\varphi \) to the cube \(|\theta_j| < \pi/2 \), \(1 \leq j \leq N \). The critical points of \(\varphi \) are found by setting
\[
\frac{\partial \varphi}{\partial \theta_j} = N \sin \theta_j - \sin(\theta_1 + \cdots + \theta_N) = 0 \quad \text{for} \quad j = 1, 2, \ldots, N.
\]
That is, \(\sin \theta_j \) has the value \((1/N)\sin(\theta_1 + \cdots + \theta_N) \) for all \(j \). Since the interval for \(\theta_j \) is restricted to \((-\pi/2, \pi/2) \), we have \(\theta_1 = \cdots = \theta_N \). Thus at a critical point
\[
\varphi = N^2 - N^2 \cos \theta + \cos(N\theta) - 1.
\]
This is nonnegative because of the inequality \(1 - \cos(N\theta) \leq N(1 - \cos \theta) \). We conclude that \(\varphi(\theta_1, \ldots, \theta_N) \geq 0 \) at all points. This proves (6) in case all \(\delta_j = 0 \).

The general case of (6) follows from this special case by replacing each \(\theta_j \) by \(\theta_j + \delta_j \) since \(|\cos(\theta + \delta) - 1| = |\cos \theta - \cos \delta| \) whenever \(\delta \) is an integer multiple of \(\pi \).

Both sides of (6) vanish when all \(\theta_j \) and \(\delta_j \) are zero. To see that the constant \(N \) on the right side cannot be improved, choose all \(\delta_j \) to be zero, set all \(\theta_j \) equal to \(\epsilon \), and send \(\epsilon \) to zero. \(\square \)

Lemma 2. For each real-valued function \(\theta \), there exists a function \(\delta \) whose values are either 0 or \(\pi \) such that
\[
2|\cos \theta - \cos \delta| \leq [1 - \cos(2\theta)].
\]

Proof. Choose \(\delta \) so that \(\cos \delta = (\cos \theta)/|\cos \theta| \) if \(\cos \theta \neq 0 \) and \(\cos \delta = 1 \) if \(\cos \theta = 0 \). \(\square \)

We represent \(k(t) = e^{i\theta(t)} \) in the differential equation (4) and choose \(\delta(t) \) from now on as in Lemma 2. Then
\[
4 \int_0^\infty |\cos \theta(t) - \cos \delta(t)| e^{-2t} \, dt \leq 2 \int_0^\infty [1 - \cos 2\theta(t)] e^{-2t} \, dt = \text{Re}\{1 - b_1\}.
\]
We will also use the identity
\[
2 \int_0^\infty |\cos 2\theta(t) - \cos 2\delta(t)| e^{-2t} \, dt = 2 \int_0^\infty [1 - \cos 2\theta(t)] e^{-2t} \, dt = \text{Re}\{1 - b_1\}.
\]

The choice \(\theta = \delta \) in (5) gives coefficients \(b_n = 0 \) for \(n \geq 2 \). In general, therefore, we have
\[
\text{Re} \, b_n = \sum (-1)^{m+1} 2^m \Gamma_{j_1 j_2 \cdots j_m}
\times \int_0^\infty \int_{t_1}^\infty \cdots \int_{t_m}^\infty \left[\sum \cos \left(\sum_{k=1}^{m} j_k \theta(t_k) \right) - \cos \left(\sum_{k=1}^{m} j_k \delta(t_k) \right) \right] e^{-\Sigma_{k=1}^{m} j_k t_k} \, dt_m \cdots dt_2 \, dt_1.
\]
for \(n \geq 2 \). Let \(I \) denote just the iterated integral. Then Lemma 1 implies

\[
|I| \leq m \sum_{k=1}^{m} \int_{t_1}^{\infty} \cdots \int_{t_{m-1}}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| e^{-\Sigma_{j=1}^{m} t_j} dt_m \cdots dt_1
\]

\[
= m \sum_{k=1}^{m} I_k,
\]

where

\[
I_k = \int_{t_1}^{\infty} \cdots \int_{t_{k-1}}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| \int_{t_k}^{\infty} \cdots \int_{t_{m-1}}^{\infty} \times e^{-\Sigma_{j=1}^{m} t_j} dt_m \cdots dt_1
\]

\[
= \int_{t_1}^{\infty} \cdots \int_{t_{k-1}}^{\infty} e^{-\Sigma_{j=1}^{k} t_j} \int_{t_k}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| \times e^{-\Sigma_{j=1}^{m} t_j} dt_k \cdots dt_1/B_{j_1 \cdots j_m}(k)
\]

and

\[
B_{j_1 \cdots j_m}(m) = 1, \quad B_{j_1 \cdots j_m}(k) = (j_{k+1} + \cdots + j_m)(j_{k+2} + \cdots + j_m) \cdots j_m.
\]

If \(j_k \) is even, then from \(t_k \geq t_{k-1} \) and Lemma 1 we have

\[
\int_{t_{k-1}}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| e^{-j_k \theta + \cdots + j_m \delta} dt_k
\]

\[
\leq e^{-j_k \theta + \cdots + j_m \delta} \int_{0}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| e^{-2 \theta} dt_k
\]

\[
\leq e^{-j_k \theta + \cdots + j_m \delta} (j_k/2)^2 \int_{0}^{\infty} |\cos(2 \theta(t_k)) - \cos(2 \delta(t_k))| e^{-2 \theta} dt_k
\]

\[
= e^{-j_k \theta + \cdots + j_m \delta} (j_k^2/8) \text{Re} \{1 - b_1\}.
\]

Similarly, if \(j_k \) is odd, then

\[
\int_{t_{k-1}}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| e^{-j_k \theta + \cdots + j_m \delta} dt_k
\]

\[
\leq e^{-j_k \theta + \cdots + j_m \delta} \int_{0}^{\infty} |\cos(j_k \theta(t_k)) - \cos(j_k \delta(t_k))| e^{-2 \theta} dt_k
\]

\[
\leq e^{-j_k \theta + \cdots + j_m \delta} ((j_k + 1)/2)
\]

\[
\times \left\{((j_k - 1)/2) \int_{0}^{\infty} |\cos(2 \theta(t_k)) - \cos(2 \delta(t_k))| e^{-2 \theta} dt_k
\right\}
\]

\[
\leq e^{-j_k \theta + \cdots + j_m \delta} ((j_k + 1)/2)
\]

\[
\times \left\{((j_k - 1)/4) \text{Re} \{1 - b_1\} + (1/4) \text{Re} \{1 - b_1\}\right\}
\]

\[
= e^{-j_k \theta + \cdots + j_m \delta} ((j_k + 1)/8) \text{Re} \{1 - b_1\}.
\]
If \(|x|\) denotes the greatest integer less than or equal to \(x\), then we can combine these two cases by writing

\[
\int_{-\infty}^{\infty} |\cos(j_k \theta(i_k)) - \cos(j_k \delta(i_k))| e^{-(j_k + \cdots + j_m) t_k} dt_k
\leq e^{-(j_k + \cdots + j_m - 2) t_k} \left[\frac{(j_k + 1)/2}{\Re\{1 - b_1\}} \right].
\]

It follows that

\[
I_k \leq \Re\{1 - b_1\} \left[\frac{(j_k + 1)/2}{\Re\{1 - b_1\}} \right] \int_{-\infty}^{\infty} \cdots \int_{t_k-3}^{\infty} e^{-\sum_{k=1}^{j_k} t_k} \times e^{-(j_k + \cdots + j_m - 2) t_k} dt_{k-1} \cdots dt_1 \left/ B_{j_1j_2\cdots j_m}(k)\right.
\]

\[
= \Re\{1 - b_1\} \left[\frac{(j_k + 1)/2}{C_{j_1j_2\cdots j_m}(k)} \right],
\]

where

\[
C_{j_1j_2\cdots j_m}(k) = A_{j_1j_2\cdots j_m}(k) B_{j_1j_2\cdots j_m}(k),
\]

and

\[
A_{j_1j_2\cdots j_m}(1) = 1,
\]

\[
A_{j_1j_2\cdots j_m}(k) = (j_1 + \cdots + j_m - 2)(j_2 + \cdots + j_m - 2) \cdots (j_{k-1} + \cdots + j_m - 2).
\]

In summary, we have the estimate \(\Re b_n \leq \lambda \Re\{1 - b_1\}\), where

\[
\lambda = \sum m 2^{m-2} \Gamma_{j_1j_2\cdots j_m} \sum_{k=1}^{m} j_k \left[\frac{(j_k + 1)/2}{C_{j_1j_2\cdots j_m}(k)} \right]
\]

and the first summation is over all positive integers \(j_1, j_2, \ldots, j_m\) with \(j_m \geq 2\) and \(j_1 + j_2 + \cdots + j_m = n + 1\). Therefore (3) is proved and also

\[
\Re\{\lambda b_1 - b_n\} \leq \lambda \Re b_1 + |\Re b_n| \leq \lambda \Re b_1 + \lambda \Re\{1 - b_1\} = \lambda. \Box
\]

Estimates for \(\lambda\). Direct computation of (7) leads, for example, to the estimates

\[
|\Re b_2| \leq 8 \Re\{1 - b_1\}, \quad |\Re b_3| \leq (115/3) \Re\{1 - b_1\},
\]

\[
|\Re b_4| \leq (1963/12) \Re\{1 - b_1\}, \quad |\Re b_5| \leq (6421/10) \Re\{1 - b_1\}.
\]

The first inequality is not as good as the sharp inequality \(|\Re b_2| \leq 2 \Re\{1 - b_1\}\) proved by Garabedian and Schiffer [2]. They also proved that \(\Re\{b_3 - 3b_1\} \geq -3\). Together with the inequality \(\Re\{b_3 + 3b_1\} \leq 3\), which is a special case of what is proved in [4, Theorem 3.3], this implies that \(|\Re b_3| \leq 3 \Re\{1 - b_1\}\). However, the inequalities for the higher coefficients are the only ones of this form known to the authors. For example, they imply

\[
\Re\{\left(1963/12\right) b_1 - b_4\} \leq 1963/12 \quad \text{and} \quad \Re\{\left(6421/10\right) b_1 - b_5\} \leq 6421/10.
\]

It is desirable to have an estimate for (7) which is of a simpler form. Each factor in \(\Gamma_{j_1j_2\cdots j_m}\) is dominated by the corresponding factor in \(C_{j_1j_2\cdots j_m}(k)\); hence

\[
\Gamma_{j_1j_2\cdots j_m}/C_{j_1j_2\cdots j_m}(k) \leq 1.
\]

In addition, each \(j_k \leq n - m + 2\). Therefore

\[
\lambda \leq \sum m 2^{m-3} (n - m + 2)(n - m + 3),
\]

for all \(n \geq 2\) and \(m \leq n\).
where the summation is over all positive integers \(j_1, j_2, \ldots, j_m \) with \(j_m \geq 2 \) and \(j_1 + j_2 + \cdots + j_m = n + 1 \). For fixed \(m \) there are \(\binom{n+1}{m-1} \) such terms; thus
\[
\lambda \leq \sum_{m=1}^{n} m^22^{m-3}(n-m+2)(n-m+3)\binom{n-1}{m-1}
\]
\[
= \left(\frac{1}{4}\right)(4n^4 + 50n^3 + 149n^2 + 277n + 6)3^{n-5} \equiv \mu_n.
\]
As a consequence, with \(\mu_n \) defined just above, our development gives the weaker, but very explicit inequalities
\[
|\text{Re} b_n| \leq \mu_n \text{Re} \{1 - b_1\} \quad \text{and} \quad \text{Re} \{\mu_n b_1 - b_n\} \leq \mu_n.
\]

Concluding remark. Just as in Pederson's article [5], we can obtain the following more general theorem.

Theorem. Let \(P \) be a polynomial of \(n \) variables with real coefficients, and assume that \(g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n} \) belongs to \(\Sigma \). Then there exists a constant \(C \), independent of \(g \), such that
\[
|\text{Re} \{P(b_1, b_2, \ldots, b_n) - P(1, 0, \ldots, 0)\}| \leq C \text{Re} \{1 - b_1\}.
\]

References
7. G. Schober, Some conjectures for the class \(\Sigma \), Contemporary Math. (to appear).

Department of Mathematics, University of Delaware, Newark, Delaware 19716
Department of Mathematics, Indiana University, Bloomington, Indiana 47405