High order coefficient estimates in the class $\Sigma$
HTML articles powered by AMS MathViewer
- by Y. J. Leung and G. Schober
- Proc. Amer. Math. Soc. 94 (1985), 659-664
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792279-3
- PDF | Request permission
Abstract:
Estimates are given for the coefficients ${b_n}$ of functions in the class $\sum$ in terms of $\operatorname {Re} \{ 1 - {b_1}\}$. As a consequence, there is an explicit finite number $\lambda$ such that $\operatorname {Re} \{ \lambda {b_1} - {b_n}\} \leqslant \lambda$.References
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. (2) 61 (1955), 116–136. MR 66457, DOI 10.2307/1969623
- William E. Kirwan and Glenn Schober, New inequalities from old ones, Math. Z. 180 (1982), no. 1, 19–40. MR 656220, DOI 10.1007/BF01214997
- Y. J. Leung and G. Schober, Low order coefficient estimates in the class $\Sigma$, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), no. 1, 39–61. MR 826348, DOI 10.5186/aasfm.1986.1111
- Roger N. Pederson, A note on the local coefficient problem, Proc. Amer. Math. Soc. 20 (1969), 345–347. MR 236371, DOI 10.1090/S0002-9939-1969-0236371-1
- Glenn Schober and John K. Williams, On coefficient estimates and conjectures for the class $\Sigma$, Math. Z. 186 (1984), no. 3, 309–320. MR 744822, DOI 10.1007/BF01174885
- Glenn Schober, Some conjectures for the class $\Sigma$, Topics in complex analysis (Fairfield, Conn., 1983) Contemp. Math., vol. 38, Amer. Math. Soc., Providence, RI, 1985, pp. 13–21. MR 789441, DOI 10.1090/conm/038/02
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 659-664
- MSC: Primary 30C50
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792279-3
- MathSciNet review: 792279