THE ASYMPTOTIC-NORMING AND THE RADON-NIKODYM PROPERTIES ARE EQUIVALENT IN SEPARABLE BANACH SPACES

N. GHOUSSOUB AND B. MAUREY

ABSTRACT. We show that the asymptotic-norming and the Radon-Nikodym properties are equivalent, settling a problem of James and Ho [9]. In the process, we give a positive solution to two questions of Edgar and Wheeler [6] concerning Čech-complete Banach spaces. We also show that a separable Banach space with the Radon-Nikodym property semi-embeds in a separable dual whenever it has a norming space not containing an isomorphic copy of l_1. This gives a partial answer to a problem of Bourgain and Rosenthal [3].

Introduction. Let X be a Banach space. We recall that X is said to have the point of continuity property (resp. the Radon-Nikodym property) if every weakly closed bounded subset of X has a point of weak to norm continuity (resp. a denting point). A separable Banach space X is said to have the asymptotic norming property if there exists a separable Banach space Y such that X is (isomorphic to) a subspace of Y^* which verifies the following property:

\[
\text{(A.N.P.)} \quad \text{if } (x_n) \subseteq X, x_n \rightharpoonup y^* \text{ and } \|x_n\| \to ||y^*||, \\
\text{then } \lim_{n} \|x_n - y^*\| = 0.
\]

In [9], James and Ho introduced the asymptotic norming property, proved that it implies the Radon-Nikodym property and asked whether the two properties are equivalent. To prove this conjecture we recall that Davis and Johnson [5] showed that for every separable subspace X of Y^*, the latter can be renormed in such a way that the conclusion of (A.N.P.) holds provided y^* is assumed to be in X. The only missing ingredient in the equivalent norm is then the term that forces y^* to be in X. On the other hand, the authors proved in [7] the following

Theorem 1 [7]. Let X be a separable Banach space. Then X has the point of continuity property (resp. the Radon-Nikodym property) if and only if X embeds isometrically in the dual of a separable Banach subspace Y of X^* in such a way that $Y^* \setminus X = \bigcup_n K_n$ where each K_n is weak*-compact (resp. weak*-compact and convex) in Y^*.

It is easy to see that if the convex K_n’s can be chosen to be a strictly positive distance away from X, then the distance of the elements of Y^* to the K_n’s (made into a suitable seminorm) would give the missing ingredient that forces y^* to be in X.

Received by the editors July 16, 1984.

1980 Mathematics Subject Classification. Primary 46G10, 46B22.

Key words and phrases. Asymptotic-norming and Radon-Nikodym properties, semi-embeddings.

©1985 American Mathematical Society

0002-9939/85 $1.00 + .25 per page
The problem of the existence of such \(K_n \)'s coincide with a question of Edgar and Wheeler \([6]\) on strongly Čech-complete Banach spaces. The following theorem gives a positive answer to these questions.

Theorem (1) Bis. Let \(X \) be a separable Banach space. Then \(X \) has the point of continuity property (resp. the Radon-Nikodym property) if and only if \(X \) embeds in the dual of a separable Banach space \(Y \) in such a way that \(Y^* \setminus X = \bigcup_n K_n \) where each \(K_n \) is weak\(^*-\)compact (resp. weak\(^*-\)compact and convex) satisfying \(d(K_n, X) > 0 \).

The proof will be broken into several lemmas. We shall need the following notations and terminology: If \(C \) is a subset of a dual space \(Y^* \) we shall denote by \(\overline{C}^w \) (resp. \(\overline{C} \)) its weak\(^*-\)closure (resp. its norm closure). The distance between two subsets \(C \) and \(D \) of \(Y^* \) will be denoted by \(d(C, D) = \inf \{\|x - y\|; x \in C, y \in D\} \).

If \(\Delta \) is any metric on \(Y^* \), \(l \in Y^* \) and \(\rho > 0 \), then \(B_{\Delta}(l, \rho) \) will be the \(\Delta \)-open ball \(\{y \in Y; \Delta(y, l) < \rho\} \). If \(\Delta \) is induced by the norm we shall simply write \(B(l, \rho) \). The closed unit ball of a Banach space \(Z \) will be denoted \(B_Z \).

If now \(X \) is a subspace of \(Y^* \) and \(L \) is a \(w^*-\)compact subset of \(Y^* \) which is disjoint from \(X \), we shall say that \(L \) is \(\rho \)-bad with respect to \(X \) for some \(\rho > 0 \) if

1. for each \(\varepsilon > 0 \), the set \(L_\varepsilon = \{l \in L; d(l, X) < \varepsilon\} \) is \(w^* \)-dense in \(L \);
2. the set \(l^\rho = \{l \in L; d(l, X) \geq \rho\} \) is also \(w^* \)-dense in \(L \).

Lemma (1). Let \(X \) be a subspace of the dual of a separable Banach space \(Y \), such that \(B_X^* = B_Y^* \). Let \(L \) be a \(w^* \)-compact subset of \(\theta \cdot B_Y^* \) \((\theta < 1) \) which is \(\rho \)-bad with respect to \(X \) for some \(\rho > 0 \). Let \(K \) be a \(w^* \)-compact subset of \(B_Y^* \) which is disjoint from \(X \). Then for each \(\varepsilon > 0 \) such that \(0 < \varepsilon < 1 - \theta \) and each \(w^* \)-open subset \(V \) of \(B_Y^* \) with \(V \cap L \neq \emptyset \), there exist \(l \in L, x \in X \) such that

1. \(||x|| \leq \varepsilon \),
2. \(l + x \in V \),
3. \(l + x \notin K \),
4. \(d(l + x, X) \geq \rho - \varepsilon \).

Proof. Choose \(l_1 \in L \) such that \(l_1 \in V \) and \(d(l_1, X) < \varepsilon/2 \). Consider \(x_1 \) and then \((y_n) \in X \) such that \(l_1 = w^*\lim_n (x_1 + y_n) \) with \(||y_n|| \leq \varepsilon/2 \). Note that \(||x_1|| \leq \theta + \varepsilon/2 \), hence \(x_1 + y_n \in B_X \). Choose now \(n_0 \) such that \(x_1 + y_{n_0} \in V \). We have that \(x_1 + y_{n_0} \notin K \). On the other hand, \(w^*\lim_n (l_1 - y_n + y_{n_0}) = x_1 + y_{n_0} \) and \(||l_1 - y_n + y_{n_0}|| \leq 1 \), hence, for a large enough \(n_1 \), we have \((l_1 - y_{n_1} + y_{n_0}) \in V \) and \((l_1 - y_n + y_{n_0}) \notin K \).

Since \(L \) is \(\rho \)-bad, choose \((l_m) \subseteq L \), \(d(l_m, X) \geq \rho \) such that \(l_1 = w^*\lim_m (l_m) \). That is, for a large enough \(m_0 \), we have \((l_m - y_{n_1} + y_{n_0}) \in V \) and \((l_m - y_{n_1} + y_{n_0}) \notin K \). Now take \(l = l_{m_0} \) and \(x = (-y_{n_1} + y_{n_0}) \). They clearly verify the claimed properties.

Lemma (2). Let \(X \) be a separable subspace of the dual of a separable Banach space \(Y \) such that \(B_X \) is a \(w^* \)-Gs, \(w^* \)-dense in \(B_Y^* \). Then for each \(\theta < 1, \theta B_Y \) contains no \(\rho \)-bad \(w^* \)-compact sets with respect to \(X \) for any \(\rho > 0 \).

Proof. Write \(B_Y \setminus B_X = \bigcup_n K_n \) where \((K_n) \) is an increasing sequence of \(w^* \)-compact sets. Let \(\Delta \) be a distance defining the \(w^* \)-topology on \(B_Y \) and let \((z_n) \) be a dense sequence in \(B_X \). Suppose \(L \) is a \(w^* \)-compact subset of \(\theta \cdot B_Y \) \((\theta < 1) \) which is \(\rho \)-bad with respect to \(X \) for some \(\rho > 0 \).
Let \(l_0 \) be any point in \(L \) and let \(V_0 = B_\Delta(l_0,1) \) and \(0 < \varepsilon_0 < \inf(1 - \theta, \rho/2) \). Use Lemma (1) to obtain \(x_0 \in X \), \(\|x_0\| \leq \varepsilon_0 \) and \(l'_0 \in L \) such that \(l'_0 + x_0 \in V_0 \), \(l'_0 + x_0 \notin K_0 \) and \(d(l'_0 + x_0, X) \geq \rho - \varepsilon_0 > \rho/2 \).

Now set \(L_1 = L + x_0, \theta_1 = \theta + \varepsilon_0 < 1 \) and \(l_1 = l'_0 + x_0 \).

Note that \(L_1 \) is also \(\rho \)-bad with respect to \(X \) and \(L_1 \subseteq \theta_1 \cdot B_Y \). Let \(V'_1 \) be a \(w^* \)-open subset of \(V_0 \) containing \(l_1 \) such that \(V'_1 \cap (K_0 \cup B^*(z_0, \rho/2)) = \emptyset \). Set \(V_1 = V'_1 \cap B_\Delta(l_1,1/2) \) and \(\varepsilon_1 < \inf(1 - \theta_1, \rho/2) \) and apply again Lemma 1 to obtain \(x_1 \in X, \|x_1\| = \varepsilon_1, l'_1 \in L_1, \ l'_1 + x_1 \in V_1, \ l'_1 + x_1 \notin K_1 \) and \(d(l'_1 + x_1, X) \geq \rho - \varepsilon_1 > \rho/2 \).

By induction, we get a decreasing sequence \((V_n)\) of \(w^* \)-open subsets of \(B_Y \) and a sequence \((l_n)\) of vectors such that

(i) \(l_n \in V_n \) for each \(n \),

(ii) \(\text{diam}_A(V_n^*) \leq 2^{-n} \),

(iii) \(V_n^* \cap (K_{n-1} \cup (\bigcup_{j=0}^{n-1} B^*(z_j, \rho/2))) = \emptyset \).

It follows that the \(w^* \)-limit \(l_\infty \) of \((l_n)\) can neither be in \(B_X \) nor in any of the \(K_n \)'s, which is obviously a contradiction since \(l_\infty \in B_Y \).

Lemma (3). Let \(X \) be a separable subspace of the dual of a separable Banach space \(Y \) such that \(B_X \) is a \(w^* \)-Gδ, \(w^* \)-dense in \(B_Y \). Let \(L \) be a subset of \(Y^* \) which is disjoint of \(X \). Then:

(i) If \(L \) is \(w^* \)-compact, there exists a \(w^* \)-open set \(V \) such that \(L \cap V \neq \emptyset \) and \(d(L \cap V^*, X) > 0 \).

(ii) If \(L \) is \(w^* \)-compact and convex, there exists a \(w^* \)-open half-space \(V \) such that \(L \cap V \neq \emptyset \) and \(d(L \cap V^*, X) > 0 \).

Proof. We first claim that there exists \(\varepsilon > 0 \) such that the set \(L_\varepsilon = \{ l \in L; d(l, X) \leq \varepsilon \} \) is not \(w^* \)-dense in \(L \). Indeed, suppose not. We can assume without loss that \(L \subseteq B_Y/2 \). Now note that \(L = \bigcup_n L^n \) where \(L^n = \{ l; d(l, X) \geq 1/n \} \) since \(L \cap X = \emptyset \). It follows that there exists \(m \) such that \(L^m \) has a nonempty interior \(V_0 \) in the \(w^* \)-topology relative to \(L \). It follows that \(V_0^* \) is a 1/m-bad set with respect to \(X \) which clearly contradicts Lemma (2).

In case (i) we take \(V \) to be a \(w^* \)-open subset of \(Y^* \) such that \(V \cap L = L \setminus L_\varepsilon^* \) which is nonempty.

In case (ii), note that \(L_\varepsilon^* \) is also convex, hence, any \(w^* \)-open half-space \(V \) that separates any point \(l \) in \(L \setminus L_\varepsilon^* \) from \(L_\varepsilon^* \) will do the job.

Lemma (4). Let \(X \) be a separable subspace of the dual of a separable Banach space \(Y \) such that \(B_X \) is a \(w^* \)-Gδ set which is \(w^* \)-dense in \(B_Y \). Let \(L \) be a subset of \(Y^* \) which is disjoint of \(X \). Then:

(i) If \(L \) is \(w^* \)-compact, there exists a countable collection of \(w^* \)-compact sets \((L_n)\) whose union is \(L \) such that \(d(L_n, X) > 0 \) for each \(n \).

(ii) If \(L \) is \(w^* \)-compact and convex, there exists a countable collection of \(w^* \)-compact convex sets whose union is \(L \) such that \(d(L_n, X) > 0 \) for each \(n \).

Proof. (i) By transfinite induction, we define a decreasing family \((K_\alpha)\) of \(w^* \)-compact subsets of \(L \) in the following manner:

(a) \(K_0 = L \).

(b) If \(\alpha = \beta + 1 \) and \(K_\beta \) nonempty, apply Lemma (3) to \(K_\beta \) to obtain a \(w^* \)-open set \(V_\beta \) such that \(K_\beta \cap V_\beta \neq \emptyset \) and \(d(K_\beta \cap V_\beta^*, X) > 0 \). Set \(K_\alpha = K_\beta \setminus V_\beta \).
(c) If \(\alpha \) is a limit ordinal, set \(K_\alpha = \bigcap_{\beta < \alpha} K_\beta \).

Since \(L \) is \(w^* \)-metrizable there exists \(\gamma < \Omega \) (the first uncountable ordinal) such that \(K_\gamma = \emptyset \). It is clear that \(L = \bigcup_{\alpha < \gamma} K_\alpha \cap V_\alpha^* \) and \(L_\alpha = K_\alpha \cap \overline{V_\alpha^*} \) is a strictly positive distance away from \(X \) for each \(\alpha < \gamma \).

(ii) If \(L \) is also convex, then \(V \) can be taken to be a \(w^* \)-open half-space by Lemma (3), hence each \(L_\alpha = K_\alpha \cap \overline{V_\alpha^*} \) is then \(w^* \)-compact and convex.

The following is now immediate:

Theorem (1) Ter. Let \(X \) be a separable subspace of the dual of a separable Banach space \(Y \) such that \(B_X \) is \(w^* \)-dense in \(B_Y^* \). If \(Y^* \setminus X = \bigcup_n K_n \) where each \(K_n \) is \(w^* \)-compact (resp. \(w^* \)-compact and convex), then \(Y^* \setminus X = \bigcup_n K'_n \) where each \(K'_n \) is \(w^* \)-compact (resp. \(w^* \)-compact and convex) such that \(d(K'_n, X) > 0 \).

Proof of Theorem (1) Bis. If \(X \) is a separable Banach space with the point of continuity property, apply Theorem (1) to get a separable Banach subspace \(Y \) of \(X^* \) such that \(X \) is a subspace of \(Y^* \) verifying \(Y^* \setminus X = \bigcup_n K_n \) where each \(K_n \) is \(w^* \)-compact. It follows that \(B_X \) is a \(w^* \)-open, \(w^* \)-dense subset of \(B_Y^* \). Apply now Theorem (1) ter to get the conclusion.

If \(X \) has the Radon-Nikodym property, each \(K_n \) is then convex, and Theorem (1) ter applies again and gives the claimed result.

The following corollary answers two questions of Edgar and Wheeler [6]:

Corollary (5). (a) A separable Banach space \(X \) has the point of continuity property and its dual \(X^* \) is separable if and only if \(X^{**} \setminus X \) is the countable union of \(w^* \)-compact sets \((K_n) \) such that \(d(K_n, X) > 0 \).

(b) A separable Banach space \(X \) has the Radon-Nikodym property and its dual \(X^* \) is separable if and only if \(X^{**} \setminus X \) is the countable union of \(w^* \)-compact convex sets \((K_n) \) such that \(d(K_n, X) > 0 \).

Proof. In view of the results of [6 and 7] the space \(Y \) mentioned in Theorem (1) can be taken in this case to be the separable dual \(X^* \).

Theorem (1) bis and the proof of Theorem 4.14 of [6] applied to \(Y \) instead of \(X^* \) gives the following

Corollary (6). A separable Banach space \(X \) has the point of continuity property if and only if there exists a separable Banach space \(Y \) and a family of norm one vectors \(\{y_{n,i}; 1 \leq i \leq m_n, n \in \mathbb{N}\} \) in \(Y \) such that

\[
X = \left\{ y^* \in Y^*; \lim_{n} \max_{1 \leq i \leq m_n} |y^*(y_{n,i})| = 0 \right\}.
\]

The following settles a question of James and Ho [9]:

Theorem (2). A separable Banach space \(X \) has the Radon-Nikodym property if and only if it has the asymptotic-norming property.

Proof. Suppose that \(X \) has the Radon-Nikodym property. Apply Theorem (1) bis to obtain a separable Banach space \(Y \) such that \(X \) is a subspace of \(Y^* \) verifying \(Y^* \setminus X = \bigcup_n K_n \) where each \(K_n \) is \(w^* \)-compact convex and \(d(K_n, X) \geq \varepsilon_n > 0 \). Following Davis and Johnson [5], let \((E_n)_n \) be an increasing sequence of
finite-dimensional subspaces of X such that $X = \bigcup_n E_n$ and define the seminorm $||x|| = \sum_n 2^{-n}d(x, E_n)$. Now let $!_n$ be the seminorm defined by

$$!_n = d(x, R+K_n) + d(x, -R+K_n)$$

and set $! = \sum_n 2^{-n}!_n$. Finally, let $||x||_1 = ||x|| + |||x||| + !$. Note that $||x|| \leq ||x||_1 \leq 7||x||$ for each x in Y^* and that $||_1$ is w^*-lower semicontinuous, hence, it is a dual norm on Y^*.

Suppose now that $(x_n) \subseteq X$, $y^* \in Y^*$ such that $||x_n||_1 \to ||y^*||_1$ and w^*-$\lim_n (x_n) = y^*$. Since each piece of the norm is w^*-lower semicontinuous we get that $||x_n|| \to ||y^*||$, $|||x_n||| \to ||y^*||$ and $d(x_n, R+K_m) \to d(y^*, R+K_m)$ for each m.

We claim that $y^* \in X$. Indeed, if not, then there exists an m such that $y^* \in K_m$ and $\lim n d(x_n, R+K_m) = d(y^*, R+K_m) = 0$.

We can then suppose that $||x_n - \lambda_n k_n|| \leq 1/n$ for some $\lambda_n \in R_+$ and $k_n \in K_m$. This gives

$$1/n \geq ||x_n - \lambda_n k_n|| = \lambda_n ||x_n/\lambda_n - k_n|| \geq \lambda_n \varepsilon_m.$$

It follows that $\lambda_n \to 0$ and $||x_n|| \to 0$, a contradiction. Since y^* is now in X, the Davis-Johnson norm insures that $\lim_n ||x_n - y^*|| = 0$.

The converse was proved by James and Ho [9]. We sketch an easier proof based on martingales and already used by Davis et al. [4]. Let D be a countable dense set in the unit ball of Y. Let (ϕ_n) be an X-valued bounded martingale. Let ϕ_∞ be a w^*-limit of (ϕ_n) which is valued in Y^*. For each $y \in D$, the real-valued martingale $y(\phi_n)$ converges to $y(\phi_\infty)$ outside a set Ω_y of measure zero.

By a lemma of Neveu [11], the martingale $||\phi_n|| = \sup_{y \in D} |y(\phi_n)|$ converges to $\sup_{y \in D} |y(\phi_\infty)| = ||\phi_\infty||$ outside a set Ω_0 of measure zero. Since X has the asymptotic norming property with respect to Y, we get that $\lim_n ||\phi_n - \phi_\infty|| = 0$ outside the set $\Omega_0 \cup \bigcup_{y \in D} \Omega_y$ which is of measure zero.

Recall that a bounded linear operator T from a Banach space X into a space Y is said to be a semi-embedding if it is one-to-one and if the image of the unit ball of X by T is norm closed in Y. In [3], Bourgain and Rosenthal showed that the L_∞-spaces constructed by Bourgain and Delbaen [2] do not semi-embed in separable duals even though they enjoy the Radon-Nikodym property. On the other hand, they show that the Radon-Nikodym spaces constructed by Johnson and Lindenstrauss [10] do semi-embed in separable duals even though they do not embed in such spaces. The following theorem gives a sufficient condition that guarantees such semi-embeddings for Radon-Nikodym spaces. It gives a partial solution to a question of Bourgain and Rosenthal [3].

Theorem (3). If X is a separable Banach space with a norming space not containing an isomorphic copy of l_1, then X has the Radon-Nikodym property if and only if it semi-embeds in a separable dual.

First we need the following

Lemma (5). Let Y be a separable Banach space not containing an isomorphic copy of l_1. If X is a separable subspace of Y^* with the Radon-Nikodym property such that B_X is w^*-dense in B_Y^*, then the orthogonal of X in Y^{**} is w^*-separable.

Proof. By a theorem of Bourgain [1], B_X is then w^*-dentable in Y^*; that is, every norm closed convex subset of B_X contains w^*-open slices with arbitrarily
small diameters. Now, we proceed as in Lemma III.1 of [7]: Fix $\varepsilon > 0$ and define inductively a decreasing family of norm-closed convex subsets (F_α) of B_X in the following way:

(i) $F_0 = B_X$.

(ii) If $\alpha = \beta + 1$ and $F_\beta \neq 0$, use the w^*-dentability to find a w^*-open slice S_β of F_β such that $\text{diam}(S_\beta) < \varepsilon$. Set $F_\alpha = F_\beta \setminus S_\beta$.

(iii) If α is a limit ordinal, let $F_\alpha = \bigcap_{\beta < \alpha} F_\beta$.

Since B_X is separable, there exists $\gamma < \Omega$ (the first uncountable ordinal) such that $F_\gamma = \emptyset$ and $F_\beta \neq 0$ for $\beta < \gamma$. Let K_α be the w^*-closure of F_α in Y^* and let H_α be the w^*-open half-space such that $S_\alpha = H_\alpha \cap F_\alpha$. It is clear that

$$B_X \subseteq \bigcap_{\alpha \leq \gamma} \left(K_\alpha \cup \bigcup_{\beta < \alpha} H_\beta \right).$$

Moreover, if x belongs to the set on the right-hand side, then $x \in K_\beta \cap H_\beta$ for some $\beta < \gamma$ which implies that $d(x, B_X) \leq \varepsilon$. It follows that if we repeat the construction for each $\varepsilon = 1/n$ we then get

$$B_X = \bigcap_{n} \bigcap_{\alpha \leq \gamma_n} \left(K_{\alpha, n} \cup \bigcup_{\beta < \alpha} H_{\beta, n} \right).$$

Since Y is separable, write that $K_{\alpha, n} = \bigcap_m L_{\alpha, n, m}$ where each $L_{\alpha, n, m}$ is a w^*-open half-space in Y^*. It follows that $Y^* \setminus B_X$ and hence $Y^* \setminus X$ is a countable union of w^*-compact convex subsets (K_α) of Y^*. By Theorem (1) ter, we can suppose that $d(K_\alpha, X) > \varepsilon_n > 0$. If π is now the quotient map from Y^* onto Y^*/X, we obtain that $0 \in \pi(K_\alpha)$ for each n, hence, there exists f_n in $(Y^*/X)^* = X^\perp$ such that $f_n > \varepsilon_n$ on $\pi(K_\alpha)$. It is now clear that $X = \{y^* \in Y^*; f_n(y^*) = 0; \forall n \in \mathbb{N}\}$ and that X^\perp is w^*-separable.

Proof of Theorem (3). Since l_1 does not embed in Y, use Odell and Rosenthal's theorem [12] to find for each n a sequence $(g_{n,m})$ in Y that converges pointwise on Y^* to f_n. The space X can now be written as $\{y^* \in Y^*; \lim_{m \to \infty} g_{n,m}(y^*) = 0; \forall n \in \mathbb{N}\}$. We may suppose that $\|g_{n,m}\| \leq 1$ for each $n, m \in \mathbb{N}$. Define now for each $n \geq 1$, the operator $T_n : l_1 \to Y$ by $T_n(\alpha_m)_m = \sum_n \alpha_m g_{n,m}$ and let $T_0 : l_2 \to Y$ be a dense range operator. Let $T : l_2 \oplus (\sum_n l_1)_l \to Y$ be the unique linear operator whose restrictions to the factor spaces are those given by the sequence $\{T_0, (2^{-n}T_n)_{n \geq 1}\}$. Let $T^* : Y^* \to l_2 \oplus (\sum_n l_\infty)_l$ be the dual operator which is one-to-one since T_0^* is. We claim that T^* is valued in $l_2 \oplus (\sum_n c)_l$ and that $T^*(B_X)$ is norm-closed. Indeed, we have for each $n \geq 1$ and each $y^* \in Y^*$,

$$(T_n^*(y^*)) = (g_{n,m}(y^*))_m$$

which is convergent to $f_n(y^*)$. Moreover, if $x_l \in B_X$ and $\lim_l T^* x_l = z$, then $z = T^* y^*$ where y^* is a w^*-limit of (x_l) in Y^* since T^* is one-to-one and w^*-to-w^* continuous. Moreover, since for each n, $g_{n,m}(x_l) \to g_{n,m}(y^*)$ uniformly in m, we get that $f_n(x_l) \to f_n(y^*)$ and $f_n(y^*) = 0$ for each n. It follows that $y^* \in B_X$.

The operator T has a separable adjoint, hence the Stegall factorization theorem [13] applies and we get a separable Banach space Z with a separable dual such that $T = U \circ V$ where $U : Z \to Y$ and $V : l_2 \oplus (\sum_n l_1)_l \to Z$. Note now that $U^*(B_X)$ is norm-closed in Z^* since $T^*(B_X)$ is closed in $l_2 \oplus (\sum_n l_\infty)_l$. Hence U^* is a semi-embedding of X into the separable dual Z^*.
REMARK. The proof of Theorem (1) bis relies heavily on the fact that the ball of X is a $w^*-G_δ$ in Y^*. Actually the local statement is not true. In a forthcoming paper, we construct a $w^*-G_δ$ subset C of a dual space whose complement is not decomposable into a countable union of w^*-compact sets which are a strictly positive distance away from C. This question is closely related to the problem of minimizing a certain class of functions on the set C. We shall deal with these questions in [8].

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ DE PARIS VII, PARIS, FRANCE