The atomic decomposition of Besov-Bergman-Lipschitz spaces
HTML articles powered by AMS MathViewer
- by Geraldo Soares De Souza
- Proc. Amer. Math. Soc. 94 (1985), 682-686
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792283-5
- PDF | Request permission
Abstract:
Let $b$ denote a special atom, $b:[ - \pi ,\pi ) \to R,\;b(t) = 1/2\pi$ or, for any interval $I{\text { in }}[ - \pi ,\pi )\;$ $b(t) = - {\left | I \right |^{ - 1/p}}\mathcal {X}R(t) + {\left | I \right |^{ - 1/p}}\mathcal {X}L(t)$ $L$ is the left half of $I$, $R$ is the right half, $\left | I \right |$ denotes the length of $I$ and $\mathcal {X}E$ the characteristic function of $E$. For $1/2 < p < \infty$, let $({b_n})$ be special atoms and $({c_n})$ a sequence of real numbers; then we define the space \[ {B^p} = \left \{ {f:[ - \pi ,\pi ) \to R;f(t) = \sum \limits _{n = 1}^\infty {{c_n}{b_n}(t),} \sum \limits _{n = 1}^\infty {\left | {{c_n}} \right | < \infty } } \right \}\]. We endow ${B^p}$ with the norm ${\left \| f \right \|_{{B^P}}} = {\text {Inf}}\sum \nolimits _{n = 1}^\infty {\left | {{c_n}} \right |}$, where the infimum is taken over all possible representations of $f$. In the early 1960s, the following spaces were introduced, now known as Besov-Bergman-Lipschitz spaces. For $0 < \alpha < 1$, $1 \leq r$, $s \leq \infty$, let \[ \Lambda (\alpha ,r,s) = \left \{ {f:[ - \pi ,\pi ) \to R,{{\left \| f \right \|}_{\Lambda (\alpha ,r,s)}} = {{\left \| f \right \|}_r} + {{\left ( {\int _{ - \pi }^\pi {\frac {{{{({{\left \| {f(x + t) - f(x)} \right \|}_r})}^s}}}{{{{\left | t \right |}^{1 + \alpha s}}}}dt} } \right )}^{1/s}} < \infty } \right \}\] where $||\;|{|_r}$ is the Lebesgue space ${L^r}$-norm. Now we write down the main theorem of this paper which is as follows. THEOREM $f \in {B^P}$ for $1 < p < \infty$ if and only if $f \in \Lambda (1 - 1/p,1,1)$. Moreover, there are absolute constants $M$ and $N$ such that \[ N{\left \| f \right \|_{{B^p}}} \leq {\left \| f \right \|_{\Lambda (1 - 1/p,1,1)}} \leq M{\left \| f \right \|_{{B^p}}}\].References
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- O. V. Besov, Investigation of a class of function spaces in connection with imbedding and extension theorems, Trudy Mat. Inst. Steklov. 60 (1961), 42–81 (Russian). MR 0133675 G. S. de Souza, Spaces formed by special atoms, Ph.D. Dissertation, State Univ. New York at Albany, 1980. —, Spaces formed with special atoms. II, Functional Analysis, Holomorphy and Approximation Theory. II, Elsevier Science Publ. B.V., North-Holland, Amsterdam, 1984.
- Geraldo Soares De Souza, Spaces formed by special atoms. I, Rocky Mountain J. Math. 14 (1984), no. 2, 423–431. MR 747289, DOI 10.1216/RMJ-1984-14-2-423
- Geraldo Soares De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), no. 2, 267–276. MR 692532, DOI 10.1112/jlms/s2-27.2.267
- Geraldo Soares de Souza, Two theorems on interpolation of operators, J. Functional Analysis 46 (1982), no. 2, 149–157. MR 660184, DOI 10.1016/0022-1236(82)90033-7
- Geraldo Soares De Souza, An interpolation of operators, An. Acad. Brasil. Ciênc. 54 (1982), no. 3, 465–467. MR 693333 G. S. de Souza, Richard O’Neil and G. Sampson, An analytic characterization of the special atoms spaces, Preprint 1983. —, The dyadic special atom space, Proceedings of the Conference on Harmonic Analysis (Minneapolis, 1981), Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1981. —, On the convergence of Fourier series, Internat. J. Math. Math. Sci. (to appear).
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749–768. MR 268388, DOI 10.1112/plms/s3-20.4.749
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MR 283559, DOI 10.1090/S0002-9947-1971-0283559-3
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062 M. Taibleson, On the theory of Lipschitz spaces and distributions on Euclidean $n$-space. I, II and III, J. Math. Mech. 13 (1964), 407-479; 14 (1965), 821-839; 15 (1966), 973-981. —, Personal communication.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 682-686
- MSC: Primary 46E35; Secondary 42C15
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792283-5
- MathSciNet review: 792283