The topological spaces that support Haar systems
HTML articles powered by AMS MathViewer
- by Scott McCullough and Daniel Wulbert
- Proc. Amer. Math. Soc. 94 (1985), 687-692
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792284-7
- PDF | Request permission
Abstract:
A topological space $X$ supports a nontrivial Haar system if and only if there is a continuous one-to-one map of $X$ into the unit circle. This gives an elementary proof of Mairhuber’s classical theorem for compact $X$. It answers a 1960 question asked by R. R. Phelps when $X$ is locally compact.References
- S. N. Bernstein, Lecon sur les propriétés extrémales et la meilleure approximation des a fonctions analytiques d’une variable réele, Gauthier-Villars, Paris, 1926.
E. Borel, Lecons sur les fonctiones de variables réelles, Gauthier-Villars, Paris, 1905.
P. C. Chebychev, Sur les questions de minima qui se rattachent a la représentations approximative des fonctions, Oeuvres. I, 1859, pp. 273-378.
- E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0222517
- Philip C. Curtis Jr., $n$-parameter families and best approximation, Pacific J. Math. 9 (1959), 1013–1027. MR 108670
- Alfred Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1917), no. 1, 294–311 (German). MR 1511900, DOI 10.1007/BF01457106
- George W. Henderson and Brian R. Ummel, The nonexistence of complex Haar systems of nonplanar locally connected spaces, Proc. Amer. Math. Soc. 39 (1973), 640–641. MR 315343, DOI 10.1090/S0002-9939-1973-0315343-3
- John C. Mairhuber, On Haar’s theorem concerning Chebychev approximation problems having unique solutions, Proc. Amer. Math. Soc. 7 (1956), 609–615. MR 79672, DOI 10.1090/S0002-9939-1956-0079672-3
- R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238–255. MR 113125, DOI 10.1090/S0002-9947-1960-0113125-4
- I. J. Schoenberg, On the question of unicity in the theory of best approximations, Ann. New York Acad. Sci. 86 (1960), 682–692 (1960). MR 120496
- K. Sieklucki, Topological properties of sets admitting the Tschebycheff systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 603–606. MR 0100192
- John Wesley Young, General theory of approximation by functions involving a given number of arbitrary parameters, Trans. Amer. Math. Soc. 8 (1907), no. 3, 331–344. MR 1500787, DOI 10.1090/S0002-9947-1907-1500787-8
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 687-692
- MSC: Primary 41A52; Secondary 41A45, 41A65
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792284-7
- MathSciNet review: 792284