Dense periodicity on the interval
HTML articles powered by AMS MathViewer
- by Marcy Barge and Joe Martin
- Proc. Amer. Math. Soc. 94 (1985), 731-735
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792293-8
- PDF | Request permission
Abstract:
We give a description of those continuous functions on the interval for which the set of periodic points is dense.References
- Joseph Auslander and James A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J. (2) 32 (1980), no. 2, 177–188. MR 580273, DOI 10.2748/tmj/1178229634
- Marcy Barge and Joe Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), no. 1, 355–365. MR 779069, DOI 10.1090/S0002-9947-1985-0779069-7
- Marcy Barge and Joe Martin, Dense orbits on the interval, Michigan Math. J. 34 (1987), no. 1, 3–11. MR 873014, DOI 10.1307/mmj/1029003477
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 94 (1985), 731-735
- MSC: Primary 58F20; Secondary 54H20, 58F08, 58F13
- DOI: https://doi.org/10.1090/S0002-9939-1985-0792293-8
- MathSciNet review: 792293