Rotation invariant ideals in subalgebras of $L^ \infty$
HTML articles powered by AMS MathViewer
- by Pamela Gorkin
- Proc. Amer. Math. Soc. 95 (1985), 32-36
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796441-5
- PDF | Request permission
Abstract:
In this paper, it is shown that the only (nontrivial) finitely generated rotation invariant ideals in ${H^\infty }$ are ${z^n}{H^\infty }$ for some positive integer $n$. Using results about function algebras, it is shown that other rotation invariant ideals exist. Rotation invariant ideals of other subalgebras of ${L^\infty }$ are also studied.References
- Sheldon Axler, Factorization of $L^{\infty }$ functions, Ann. of Math. (2) 106 (1977), no. 3, 567–572. MR 461142, DOI 10.2307/1971067
- E. F. Collingwood, On sets of maximum indetermination of analytic functions, Math. Z. 67 (1957), 377–396. MR 95951, DOI 10.1007/BF01258870
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- S. C. Power, On ideals of nest subalgebras of $C^\ast$-algebras, Proc. London Math. Soc. (3) 50 (1985), no. 2, 314–332. MR 772716, DOI 10.1112/plms/s3-50.2.314
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219–227. MR 304975, DOI 10.4064/sm-44-3-219-227
- Donald Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286–299. MR 324425, DOI 10.1090/S0002-9904-1973-13144-1
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- Thomas H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), no. 2, 321–328. MR 659943 —, Some theorems on vanishing mean oscillation, Thesis, Univ. of California at Berkeley, 1979.
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 32-36
- MSC: Primary 46J10; Secondary 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796441-5
- MathSciNet review: 796441