AN n-DIMENSIONAL SUBGROUP OF R^{n+1}
JAMES KEESLING

ABSTRACT. A construction given by R. D. Anderson and J. E. Keisler is modified to show that there exists an n-dimensional subgroup G in R^{n+1} such that dim G^k = n for all k. The group G is connected, locally connected, and divisible.

Introduction. For separable metric spaces the fundamental theorem for the dimension of products is dim X x Y ≤ dim X + dim Y. If X is a continuum with dim X = n, then by [3], dim X x X = 2n or 2n - 1. If X is not a continuum, then it may be that dim X x X = n and in fact dim X^k = n for all k. Anderson and Keisler gave such an example in [1] for each n as a subset of R^{n+1}. In this note we show how to modify the construction of that paper to get X to be a subgroup of R^{n+1} and thus a topological group. The example G_n will have the property that G_n meets every nondegenerate subcontinuum in R^{n+1} and consequently will be connected and locally connected. As a topological group it will have a unique completion which will be R^{n+1} since it is densely embedded in R^{n+1} [2, Theorem 1, p. 248]. It is also true that the unique topological group completion of G_n will be R^k(n+1).

The group G_n cannot contain a continuum since a nondegenerate continuum A has the property that dim A^k ≥ k. There is no complete separable metric space X which is connected and locally connected such that dim X^k = dim X for all k unless dim X = 0 or dim X = ∞. The reason for this is that X would either be degenerate or contain an arc.

Notation. Let card(A) be the cardinality of the set A. Let c denote the cardinality of the reals which we think of as an initial ordinal. We denote an s-dimensional hyperplane in R^r by H^s. For i = 1, 2, let H_i be a hyperplane of dimension t_i in R^r. Then H_1 and H_2 are in general position with respect to each other if, whenever H_1' and H_2' are translations of H_1 and H_2 with H_1' ∩ H_2' ≠ ∅, then H_1' ∩ H_2' = H' where t = max{0, t_1 + t_2 - r}.

Let Q denote the rational numbers and a = (r_1, ..., r_s) ∈ Q^s. Let H_a be the hyperplane in R^{n+s} defined by H_a = {(r_1x, ..., r_sx)|x ∈ R^n}. If a ≠ 0 in Q^s, then H_a is an n-dimensional hyperplane. There are countably many such hyperplanes since Q^s is countable.

The construction. The purpose of this paper is to give a construction proving the following main theorem.
MAIN THEOREM. For each positive integer \(n \) there is a subgroup \(G_n \) in \(\mathbb{R}^{n+1} \) such that \(\dim G_n = n \) and \(\dim G_k^n = n \) for all positive integers \(k \). The group \(G_n \) is also connected, locally connected, and divisible.

The proof is patterned after [1]. However, it is as easy to give a complete proof here as to assume familiarity with that proof. We repeat three lemmas from [1] without proof.

LEMMA 1. Let \(K \) be a subset of \(\mathbb{R}^n \) such that \(K \cap C \neq \emptyset \) for every nondegenerate continuum \(C \) in \(\mathbb{R}^n \). Then \(\dim K \leq n - 1 \).

LEMMA 2. Given a countable collection of hyperplanes \(\{H_i\}_{i=1}^{\infty} \), a \(k \)-sphere \(S \), and a hyperplane \(H \), all in \(\mathbb{R}^r \), such that \(S - H = U_1 \cup U_2 \) where \(p \in U_1 \) with \(U_1 \) open and closed in \(S - H \), and \(U_1 \cap U_2 = \emptyset \), then there exists a hyperplane \(H' \) such that (1) \(\dim H' = k \), (2) for each positive integer \(i \), \(H' \) is in general position with respect to \(H_i \), and (3) \(S - H' = V_1 \cup V_2 \) where \(p \in V_1 \subset U_1 \) is open and closed in \(S - H \) and \(V_1 \cap V_2 = \emptyset \).

In \(\mathbb{R}^{ns} \) choose a countable dense set of points and \((ns - 1)\)-dimensional spheres \(S^{ns-1} \) with rational radius about them such that none of them contains the origin. For each \(S^{ns-1} \) choose a countable set of \((ns - 1)\)-dimensional hyperplanes \(H^{ns-1} \) such that their complementary domains form a basis for the topology of \(S^{ns-1} \) and such that each \(H^{ns-1} \) is in general position with respect to each \(H_a \) for all \(a \in Q^s \). This is possible by Lemma 2. For each of the countably many \(S^{ns-1} \)'s, choose countably many \(S^{ns-2} \)'s by \(S^{ns-1} \cap H^{ns-1} \) for the \(H^{ns-1} \) chosen above.

Inductively, for each \(S^{ns-k} = S^{ns-k+1} \cap H^{ns-k+1} \), choose a countable set of hyperplanes \(H^{ns-k} \) whose complementary domains in \(S^{ns-k} \) form a basis for the topology of \(S^{ns-k} \) such that each \(H^{ns-k} \) is in general position with respect to each \(H_a \) for all \(a \in Q^s \). Let \(S_i = S_i^{ns-n} \) be the countably many \((ns - n)\)-spheres that are obtained when \(k = n \).

LEMMA 3. Let \(T \subset \mathbb{R}^{ns} \) be such that, for each \(i \), \(T \cap S_i = \emptyset \). Then \(\dim T \leq n - 1 \).

This construction is the same as in [1], except that the hyperplanes \(H^{ns-k} \) are in general position with respect to a different family of hyperplanes \(\{H_a|a \in Q^s\} \) rather than the family \(\gamma \) in [1].

Proof of the Main Theorem. We first prove a special case of the Main Theorem. We show that for a fixed \(s \) there is a subgroup \(G_n \subset \mathbb{R}^{n+1} \) such that \(\dim G_n = n = \dim G_n^s \). We will then indicate how to modify the proof so that \(\dim G_n^s = n \) for all positive integers.

Case 1. For a fixed positive integer \(s \), \(\dim G_n^s = n \).

Let \(\{C_\alpha|\alpha < c\} \) be an enumeration of the nondegenerate subcontinua in \(R^{n+1} \) and assume \(0 \in C_0 \). We want \(G_n \) to be such that \(G_n \cap C_\alpha \neq \emptyset \) for all \(\alpha \) and \(G_n^s \cap Y = \emptyset \), where \(Y = \bigcup_{i=1}^{\infty} S_i \) and the \(S_i \)'s are the \(((n + 1)s - (n + 1))\)-spheres in \(R^{(n+1)s} \) described just before Lemma 3.

Let \(G_0 = \{0\} \). Then suppose that \(G_\beta \) has been chosen for all \(\beta < \alpha < c \) with the properties that (1) \(G_\beta \) is a divisible subgroup of \(R^{n+1} \); (2) \(G_\beta \subset G_\gamma \) for all \(\beta < \gamma < \alpha \); (3) \(G_\beta^s \cap Y = \emptyset \) for all \(\beta < \alpha \); (4) \(G_\beta \cap C_\alpha \neq \emptyset \); and (5) \(\text{card } G_\beta \leq 8_0 \cdot \text{card } ([0, \alpha]) \) for all \(\beta < \alpha \). Then let \(G'_\alpha = \bigcup_{\beta < \alpha} G_\beta \). Then \(G'_\alpha \) will
satisfy (1)–(3) and (5). If \(G'_\alpha \cap C_\alpha \neq \emptyset \), then let \(G_\alpha = G'_\alpha \) and all five properties are satisfied for \(\{G_\beta\}_{\beta < \alpha - 1} \). If \(G'_\alpha \cap C_\alpha = \emptyset \), then we extend the group \(G'_\alpha \) in a manner which we now describe. Let

\[
A = \bigcup \{ \pi_k(Q \cdot (H_\alpha \cap (S_i + (G'_\alpha)^s))) | a \in Q^s, i \in N, \text{ and } k \in \{1, \ldots, s\} \}.
\]

Note that for each fixed \(a \in Q^s, i \in N, \) and \(k \in \{1, \ldots, s\} \), \(\pi_k(Q \cdot (H_\alpha \cap (S_i + (G'_\alpha)^s))) \) has cardinality at most \(N_0 \cdot \text{card}(G'_\alpha) \) since \(H_\alpha \cap (S_i + (g_1, \ldots, g_s)) \) is at most two points for all \((g_1, \ldots, g_s) \in (G'_\alpha)^s \). This implies that \(\text{card} A < c \). This implies that one can choose \(\rho_\alpha \in C_\alpha - A \). Then we let \(G_\alpha = G'_\alpha + Q \cdot \rho_\alpha \). Note that \(\text{card} G_\alpha \leq N_0 \cdot \text{card}(\{0, \alpha + 1\}) \), as required. Suppose that \(G^s_\alpha \cap Y \neq \emptyset \). Then there is an \(a = (r_1, \ldots, r_s) \in Q^s \) and \((g_1, \ldots, g_s) \in (G'_\alpha)^s \) such that \((r_1, \ldots, r_s) \rho_\alpha + (g_1, \ldots, g_s) \in G^s_\alpha \cap Y \). Clearly, some \(r_i \neq 0 \) or \((g_1, \ldots, g_s) \in Y \) and \(G^s_\beta \cap Y \neq \emptyset \) for some \(\beta < \alpha \), a contradiction. Now this implies that we have \(\rho_\alpha \in S_k + (G'_\alpha)^s \) for some \(k \) and thus \(\rho_\alpha = \pi_i(\rho_\alpha / r_i) \in \pi_i(Q \cdot (H_\alpha \cap (S_k + (G'_\alpha)^s))) \). This implies that \(\rho_\alpha \in A \), a contradiction. Therefore, \(G^s_\alpha \cap Y = \emptyset \) and \(\{G^s_\beta\}_{\beta < \alpha + 1} \) satisfies (1)–(5).

Let \(G_n = \bigcup_{\alpha < c} G_\alpha \). Then \(G_n \) will be a divisible subgroup of \(R^{n+1} \), \(G_n \cap C_\alpha \neq \emptyset \) for all \(\alpha < c \), and \(G^s_\alpha \cap Y = \emptyset \). Thus \(\dim G_n \geq n \) and \(\dim G^s_n \leq n \). Thus, \(\dim G_n = n = \dim G^s_n \). This proves the special case for a fixed \(s \).

Case 2. Construct \(G_n \) such that \(\dim G^s_n = n \) for all \(s \).

The construction is similar to Case 1. For each positive integer \(s \), let \(Y_s = \bigcup_{i=1}^{\infty} S_i \) where each \(S_i \) is an \([(n + 1)s - (n + 1)] \)-sphere in \(R^{(n+1)s} \) as in Case 1. Then we can construct \(\{G_\alpha\}_{\alpha < c} \) as in Case 1 with (1') \(G_\alpha \) a divisible subgroup of \(R^{n+1} \); (2') \(G_\alpha \subseteq G_\beta \) for all \(\alpha < \beta < c \); (3') \(G^s_\alpha \cap Y_s = \emptyset \) for all \(\alpha < c \) and all positive integers \(s \); (4') \(G_\alpha \cap C_\alpha \neq \emptyset \) for all \(\alpha < c \); and (5') \(\text{card} G_\alpha < c \) for all \(\alpha < c \). Then \(G_n = \bigcup_{\alpha < c} G_\alpha \) will be the required divisible subgroup of \(R^{n+1} \). The strengthening of (3) to (3') is straightforward and we leave this to the reader.

COROLLARY. There is a divisible subgroup \(G_n \) in \(R^{n+1} \) such that \(\dim G_n = \dim G^s_n = n \).

PROOF. This follows from Lemma 4 of [1], since \(\dim G^s_n = n \) for all \(s \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611