An $n$-dimensional subgroup of $\textbf {R}^ {n+1}$
HTML articles powered by AMS MathViewer
- by James Keesling
- Proc. Amer. Math. Soc. 95 (1985), 106-108
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796456-7
- PDF | Request permission
Abstract:
A construction given by R. D. Anderson and J. E. Keisler is modified to show that there exists an $n$-dimensional subgroup $G$ in ${R^{n + 1}}$ such that $\dim {G^k} = n$ for all $k$. The group $G$ is connected, locally connected, and divisible.References
- R. D. Anderson and J. E. Keisler, An example in dimension theory, Proc. Amer. Math. Soc. 18 (1967), 709–713. MR 215288, DOI 10.1090/S0002-9939-1967-0215288-0
- Nicolas Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205210
- I. Fáry, Dimension of the square of a space, Bull. Amer. Math. Soc. 67 (1961), 135–137. MR 123316, DOI 10.1090/S0002-9904-1961-10539-9 E. Hewitt and K. Ross, Abstract harmonic analysis, I, Springer-Verlag, Berlin, 1963, pp. 1-519.
- W. Hurewicz, Sur la dimension des produits cartesiens, Ann. of Math. (2) 36 (1935), no. 1, 194–197 (French). MR 1503218, DOI 10.2307/1968674
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 106-108
- MSC: Primary 54F45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796456-7
- MathSciNet review: 796456