A perfectly normal, locally compact, noncollectionwise normal space from $\diamondsuit ^ \ast$
HTML articles powered by AMS MathViewer
- by Peg Daniels and Gary Gruenhage
- Proc. Amer. Math. Soc. 95 (1985), 115-118
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796458-0
- PDF | Request permission
Abstract:
A perfectly normal, locally compact, collectionwise-${T_2}$, noncollectionwise normal space is constructed using ${\diamondsuit ^*}$, a combinatorial axiom which holds in Gödel’s constructible universe $L$. The construction answers questions of ${\text {F}}$. Tall and S. Watson.References
- William G. Fleissner, Normal nonmetrizable Moore space from continuum hypothesis or nonexistence of inner models with measurable cardinals, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 4, 1371–1372. MR 648069, DOI 10.1073/pnas.79.4.1371
- I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8
- Peter J. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. Math. Soc. 78 (1980), no. 3, 429–435. MR 553389, DOI 10.1090/S0002-9939-1980-0553389-4 S. Shelah, A note in general topology: if $\diamondsuit _{{\aleph _1}}^*$ then any normal space of character $\leq {\aleph _1}is{\aleph _1}{\text { - CWH}}$, preprints in Math. Logic (1979).
- Franklin D. Tall, Collectionwise normality without large cardinals, Proc. Amer. Math. Soc. 85 (1982), no. 1, 100–102. MR 647907, DOI 10.1090/S0002-9939-1982-0647907-7
- W. Stephen Watson, Locally compact normal spaces in the constructible universe, Canadian J. Math. 34 (1982), no. 5, 1091–1096. MR 675681, DOI 10.4153/CJM-1982-078-8
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 115-118
- MSC: Primary 54D15; Secondary 54A35
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796458-0
- MathSciNet review: 796458