A NOTE ON INTERSECTION OF LOWER SEMICONTINUOUS MULTIFUNCTIONS

ALOJZY LECHICKI and ANDRZEJ SPAKOWSKI

Abstract. Let F_1 and F_2 be closed and convex valued multifunctions from a topological space X to a normed space Y. Assume that the multifunctions are lower semicontinuous at x_0. We prove that the intersection multifunction $F = F_1 \cap F_2$ is lower semicontinuous at x_0 provided $F(x_0)$ is bounded and has nonempty interior.

1. Introduction. Let F be a multifunction from a topological space X to a uniform space (Y, \mathcal{U}), i.e. F is a mapping from X to the family of all subsets of Y. F will be called lower semicontinuous (lsc) at $x_0 \in X$ if for every $V \in \mathcal{U}$ there is $U \in N(x_0)$ such that $x \in U$ implies $F(x_0) \subseteq V(F(x))$, where $N(x_0)$ stands for the neighbourhood filter of x_0 and, for $A \subseteq Y$, $V(A) = \{y \in Y: (a, y) \in V$ for some $a \in A\}$. Such multifunctions will also be called Hausdorff-lower semicontinuous (H-lsc). Accordingly, if $(Y, \|\cdot\|)$ is a normed space then F is lsc at x_0 if and only if for every $\varepsilon > 0$ there is $U \in N(x_0)$ such that $F(x_0) \subseteq F(x) + B_{\varepsilon}$ for every $x \in U$, where $B_{\varepsilon} = \{y \in Y: \|y\| < \varepsilon\}$. Note that F is lsc at x_0 if and only if the multifunction \overline{F}, i.e. $F(x) = \overline{F(x)}$ for all $x \in X$, is lsc at x_0.

Let us recall the usual concept of lower semicontinuity. A multifunction F from a topological space X to a topological space Y is said to be Vietoris-lower semicontinuous (V-lsc) at $x_0 \in X$ if, for every open $G \subseteq Y$ with $F(x_0) \cap G \neq \emptyset$, there is $U \in N(x_0)$ such that $x \in U$ implies $F(x) \cap G \neq \emptyset$. It is known [6] that F is V-lsc at x_0 if and only if it is continuous at x_0 as a mapping from X to the hyperspace of all subsets of Y equipped with the lower Vietoris topology. If Y is a uniform space and F is H-lsc at x_0 then it is V-lsc at x_0. The converse also holds if the set $F(x_0)$ is totally bounded [6].

It is well known that neither H-lsc nor V-lsc are preserved under finite intersections of multifunctions. And, unlike upper semicontinuity [3, 5] no compactness type assumptions are helpful in this context. The classical result of Kuratowski [5, p. 180] says that the multifunction $F = F_1 \cap F_2$ is V-lsc at x_0 provided F_1 is V-lsc at x_0 and F_2 is constant, being equal, for every $x \in X$, to a fixed open subset of Y. Other results on the intersection of V-lsc multifunctions can be found in [8, 7, 3 and 1].

In this note we provide sufficient conditions for Hausdorff-lower semicontinuity of intersection of multifunctions. Our result improves an earlier result of one of the

Received by the editors June 18, 1984 and, in revised form, November 8, 1984.
1980 Mathematics Subject Classification. Primary 54C60.
Key words and phrases. Multifunction, lower semicontinuity, intersection of multifunctions.
1 Visiting Istituto di Matematica, Universita di Pisa, Italy.

©1985 American Mathematical Society
0002-9939/85 $1.00 +$.25 per page

119
authors obtained in [10] for finite-dimensional spaces. The key of the proof is an application of the well-known cancellation law for sets in topological vector spaces ([9], see also [11]): Let A, B and C be subsets of a real topological vector space. If B is bounded, and C is nonempty closed and convex, then $A + B \subset \overline{C + B}$ implies $A \subset C$.

2. Auxiliary lemmas. In the remaining part of this paper $Y = (Y, || \cdot ||)$ is assumed to be a real normed space.

Lemma 1. If A is a convex bounded subset of Y and $\text{int} A \neq \emptyset$, then for every $\epsilon > 0$ there are a set $C \subset \text{int} A$ and $\delta > 0$ such that $C + B_{\delta} \subset A \subset C + B_{\epsilon}$.

Proof. Take an arbitrary $\epsilon > 0$. Without loss of generality we can assume that $0 \in \text{int} A$. Since A is bounded, $\lambda \text{int} A \subset B_{\epsilon/2}$ for some $0 < \lambda < 1$. Moreover, there is $\delta > 0$ such that $B_{\delta} \subset \lambda \text{int} A$. Thus, putting $C = (1 - \lambda) \text{int} A$ we get $C + B_{\delta} \subset A \subset C + B_{\epsilon}$, because $A = \text{int} A$.

The following example shows that the assumption of the boundedness of A cannot be omitted in the above lemma.

Example. Let $Y = l^\infty$ and put $A = \{(t_k) \in l^\infty: t_1 > 0$ and $t_k \leq k(1 - t_1)$ for $k \geq 2\}$. Then A is convex and $\text{int} A \neq \emptyset$. Take $\epsilon = \frac{1}{2}$ and suppose that there are $C \subset \text{int} A$ and $\delta > 0$ such that

$$C + B_{\delta} \subset A \subset C + B_{1/2}.$$

For $n \in \mathbb{N}$ let us put $t_k^n = 0$ if $k \neq n$, $k \in \mathbb{N}$ and $t_k^n = n$. Then $x_n = (t_k^n)_{k \in \mathbb{N}} \in A$ for all $n \in \mathbb{N}$, so by (\dagger) for every $n \in \mathbb{N}$ there is $y_n = (s_k^n)_{k \in \mathbb{N}} \in C$ such that $\|x_n - y_n\| = \sup \{|t_k^n - s_k^n|: k \in \mathbb{N}\} < \frac{1}{2}$. Take $0 < \alpha < \min\{\delta, \frac{1}{2}\}$. Then $y_n + z \in C + B_{\delta} \subset A$ for every $n \in \mathbb{N}$, where $z = (\alpha, \alpha, \ldots)$. It follows that $s_k^n + \alpha > 0$ and $\alpha + s_k^n \leq n(1 - s_k^n - \alpha)$ for $n \geq 2$, hence $an \leq \frac{1}{2} - \alpha$ for $n \geq 2$, a contradiction.

However, if Y is a finite-dimensional space then Lemma 1 can be strengthened.

Lemma 2. Let A be a convex subset of \mathbb{R}^n with nonempty interior. Then for every $\epsilon > 0$ there are a set $C \subset \text{int} A$ and $\delta > 0$ such that $C + B_{\delta} \subset A \subset C + B_{\epsilon}$.

Proof. Assume that A is unbounded. Otherwise, we can apply Lemma 1. It is clear that the lemma holds if $n = 1$. Suppose then that the thesis of the lemma is satisfied for every convex subset $D \subset \mathbb{R}^{n-1}$ with nonempty interior. Take an arbitrary $\epsilon > 0$ and consider two cases:

1°. A contains a line. Without loss of generality we can assume that A contains the x_n-axis. Putting D to be the image of $\text{int} A$ by the projection into \mathbb{R}^{n-1} we have $\text{int} A = D \times \mathbb{R}$. Thus there are $E \subset \text{int} D$ and $\delta > 0$ such that $E + (B_{\delta} \cap \mathbb{R}^{n-1}) \subset D \subset E + (B_{\epsilon} \cap \mathbb{R}^{n-1})$. Then denoting by C the set $C = E \times \mathbb{R}$ we get $C \subset \text{int} A$ and $C + B_{\delta} \subset A \subset C + B_{\epsilon}$.

2°. A does not contain a line. We can suppose that $\text{int} A$ contains the nonnegative part of the x_n-axis and that for some $\lambda_0 > 0$ the set $A_1 = A \cap \{(x, \mu): x \in \mathbb{R}^{n-1}$ and $\mu \leq \lambda_0\}$ is bounded and has nonempty interior. By Lemma 1 there are $G_1 \subset \text{int} A_1$ and $\alpha > 0$ such that $C_1 + B_{\alpha} \subset A_1 \subset C_1 + B_{\epsilon}$. Let M denote the
hyperplane $M = \{(x, \lambda_0): x \in \mathbb{R}^{n-1}\}$. Since $D = A \cap M$ is a convex body in an $(n - 1)$-dimensional space, there are $E \subset \text{int } D$ and $\beta > 0$ such that $E + (B_{\beta} \cap M) \subset D \subset E + (B_{\beta/\sqrt{2}} \cap M)$. Put $A_2 = A \cap \{(x, \mu): x \in \mathbb{R}^{n-1} \text{ and } \mu \geq \lambda_0\}$. Then taking $0 < \sigma < \min\{\beta, \sqrt{2}/4\}$ we get the following: For every $y \in \partial A_2$ there exists $z \in \text{int } A_2$, such that $\|z - y\| \leq \epsilon/2$ and $z + B_\sigma \subset \text{int } A_2$, where ∂A_2 denotes the boundary of A_2. Let C_2 denote the set $C_2 = \{y \in A_2: \inf \|z - y\|: z \in A_2\} \geq \sigma\}. Let us observe that $C_2 + B_\sigma \subset C_2 \subset C_2 + B_\epsilon$. Consequently, putting $C = C_1 \cup C_2$ and taking $0 < \delta < \min\{\alpha, \sigma\}$ we get $C + B_\delta \subset A \subset C + B_\epsilon$.

A multifunction F from X to Y is called locally convex-valued (locally closed-valued) at $x_0 \in X$ if there is $U \in \mathcal{N}(x_0)$ such that $F(x)$ is convex (closed) for all $x \in U$. The following lemma is proved in [10].

Lemma 3. Assume that a multifunction F from X to Y is lsc and locally convex-valued at $x_0 \in X$. If $\text{int } F(x_0) \neq \emptyset$ then $\text{int } \{F(x): x \in U\} \neq \emptyset$ for some $U \in \mathcal{N}(x_0)$.

3. Main results.

Theorem A. Assume that the multifunctions F_1 and F_2 from X to Y are locally closed-valued and locally convex-valued at $x_0 \in X$. If F_1 and F_2 are lsc at x_0 and the set $F(x_0) + F_1(x_0) \cap F_2(x_0)$ is bounded and $\text{int } F(x_0) \neq \emptyset$ then the multifunction $F = F_1 \cap F_2$ is lsc at x_0.

Proof. Let $\epsilon > 0$ be arbitrary. By Lemma 1 there are a subset $C \subset \text{int } F(x_0)$ and $\delta > 0$ such that $C + B_\delta \subset F(x_0) \subset C + B_\epsilon$. Since F_1 and F_2 are lsc at x_0, there is $U \in \mathcal{N}(x_0)$ such that $F_i(x_0) \subset F_i(x) + B_\delta$ for all $x \in U$ and $i = 1, 2$. Without loss of generality we can assume that F_1 and F_2 are closed and convex-valued on U. Thus, applying the cancellation law we get $C \subset F(x) = F_1(x) \cap F_2(x)$ for every $x \in U$. But it follows that $F(x_0) \subset C + B_\epsilon \subset F(x) + B_\epsilon$ for all $x \in U$.

Theorem B. Let $Y = \mathbb{R}^n$ and assume that the multifunctions F_1 and F_2 are locally convex-valued at $x_0 \in X$. If F_1 and F_2 are lsc at x_0 and $\text{int } F(x_0) \neq \emptyset$ then the multifunction $F = F_1 \cap F_2$ is lsc at x_0.

Proof. Applying Lemma 2 and proceeding as in the proof of Theorem A we obtain that the multifunction $F_1 \cap F_2$ is lsc at x_0. Then, by Lemma 3 we find $U \in \mathcal{N}(x_0)$ such that F_1 and F_2 are convex-valued on U and $\text{int}(F_1(x) \cap F_2(x)) \neq \emptyset$ for all $x \in U$. Then, since Y is finite dimensional, we have $\text{int}(F_1(x) \cap F_2(x)) \neq \emptyset$ and therefore $F_1(x) \cap F_2(x) = F_1(x) \cap F_2(x)$, whenever $x \in U$ (see e.g. [2, p. 253]). Hence, the multifunction $F_1 \cap F_2$, and so also F, is lsc at x_0.

4. Counterexamples. We give some examples concerning Theorems A and B. The first one shows that the assumption $\text{int } F(x_0) \neq \emptyset$ cannot be omitted.

Example 1. Let $Y = \mathbb{R}^2$, $F_1(x) = \text{conv}\{(0, 0), (1, 0), (0, -1)\}$ and $F_2(x) = \text{conv}\{(0, 0), (0, 1), (1, 0)\}$ for all $x \in [0, 1]$. Then F_1 and F_2 are compact and convex-valued, lsc at every $x \in [0, 1]$ but $F = F_1 \cap F_2$ is not lsc at 0. Note that F is nonempty valued and $\text{int } F(0) = \emptyset$.

The second example shows that both multifunctions F_1 and F_2 must be locally convex-valued.

Example 2. Let $Y = \mathbb{R}^2$, $F_1(x) = \text{conv}\{(0,0), (0,1), (1,0), (\frac{1}{2},0)\} \cup \text{conv}\{(\frac{1}{2},0), (0,1), (1,1)\}$ and $F_2(x) = \text{conv}\{(0,0), (1,0), (1,1)\}$ for all $x \in [0,1]$. Then F_1 and F_2 are compact-valued and lsc at every $x \in [0,1]$. F_2 is convex-valued while F_1 is not. F is not lsc at 0.

The third example shows that the boundedness of $F(x_0)$ in Theorem A is essential.

Example 3. Let $Y = l^\infty$ and $F_1(x) = \{(t_k) \in l^\infty : t_1 > x \text{ and } t_k \leq k - x \text{ for } k \geq 2\}$ and $F_2(x) = \{(t_k) \in l^\infty : t_1 \leq 1 - x \text{ and } t_k \leq k(1 - t_1 - x) \text{ and } t_k \leq k + t_1/k - x/k \text{ for } k \geq 2\}$ for all $x \in [0,1]$. Then F_1 and F_2 are closed and convex-valued. Moreover, they are lsc at 0. The set $F(0) = \{(t_k) \in l^\infty : 0 \leq t_1 \leq 1 \text{ and } t_k \leq k(1 - t_1) \text{ for } k \geq 2\}$ has nonempty interior but is not bounded. F is not lsc at 0.

Finally, the last example shows that in all infinite-dimensional normed spaces the multifunctions in Theorem A must be locally closed-valued.

Example 4. Let Y be an infinite-dimensional normed space and let f be a linear noncontinuous functional on Y. Put $A = \{y \in B_1 : f(y) < 0\} \cup \{0\}$ and $B = \{y \in B_1 : f(y) > 0\} \cup \{0\}$ where B_1 is the closed unit ball of Y. Then $A = B = B_1$. Let us define the multifunctions F_1 and F_2 as follows: $F_1(0) = F_2(0) = B_1$ and $F_1(x) = A$ and $F_2(x) = B$ for all $x \in (0,1]$. Then F_1 and F_2 are lsc and convex-valued. The multifunction F is nonempty valued, the set $F(0)$ is bounded with nonempty interior but F is not lsc at 0.

References

Institute of Mathematics, Pedagogical University, Wielkopolska 15, 70-451 Szczecin, Poland

Institute of Mathematics, Pedagogical University, Oleska 48, 45-951 Opol, Poland (Current address of Andrzej Spakowski)

Current address (Alojzy Lechicki): Hardstrasse 43, D-8510 Fürth, West Germany