Dense embeddings of sigma-compact, nowhere locally compact metric spaces
HTML articles powered by AMS MathViewer
- by Philip L. Bowers
- Proc. Amer. Math. Soc. 95 (1985), 123-130
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796460-9
- PDF | Request permission
Abstract:
It is proved that a connected complete separable ANR $Z$ that satisfies the discrete $n$-cells property admits dense embeddings of every $n$-dimensional $\sigma$-compact, nowhere locally compact metric space $X(n \in N \cup \{ 0,\infty \} )$. More generally, the collection of dense embeddings forms a dense ${G_\delta }$-subset of the collection of dense maps of $X$ into $Z$. In particular, the collection of dense embeddings of an arbitrary $\sigma$-compact, nowhere locally compact metric space into Hilbert space forms such a dense ${G_\delta }$-subset. This generalizes and extends a result of Curtis [Cu$_{1}$].References
- R. D. Anderson, D. W. Curtis, and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), no. 1, 311–321. MR 656491, DOI 10.1090/S0002-9947-1982-0656491-8
- Paul Alexandroff, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), no. 1, 89–106 (German). MR 1512393, DOI 10.1007/BF01451582
- Philip L. Bowers, General position properties satisfied by finite products of dendrites, Trans. Amer. Math. Soc. 288 (1985), no. 2, 739–753. MR 776401, DOI 10.1090/S0002-9947-1985-0776401-5
- Philip L. Bowers, Discrete cells properties in the boundary set setting, Proc. Amer. Math. Soc. 93 (1985), no. 4, 735–740. MR 776212, DOI 10.1090/S0002-9939-1985-0776212-6
- D. W. Curtis, Sigma-compact, nowhere locally compact metric spaces can be densely imbedded in Hilbert space, Topology Appl. 16 (1983), no. 3, 253–257. MR 722118, DOI 10.1016/0166-8641(83)90022-6
- D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), no. 3, 201–221. MR 804034, DOI 10.1016/0166-8641(85)90089-6
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 M. Lavrentieff, Contribution à la théorie des ensembles homéomorphs, Fund. Math. 6 (1924), 149-160.
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- H. Toruńczyk, On $\textrm {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds, Fund. Math. 106 (1980), no. 1, 31–40. MR 585543, DOI 10.4064/fm-106-1-31-40
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 123-130
- MSC: Primary 54C25; Secondary 54D45, 54F45
- DOI: https://doi.org/10.1090/S0002-9939-1985-0796460-9
- MathSciNet review: 796460