Bipowers in number fields
HTML articles powered by AMS MathViewer
- by D. K. Harrison
- Proc. Amer. Math. Soc. 95 (1985), 174-178
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801318-2
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 97 (1986), 378.
Abstract:
The set of all solutions to the Fermat equation is given a structure. This structure is then characterized up to isomorphism in terms of certain subsets of the integers modulo a prime.References
- D. K. Harrison, On ordered groups, division rings and fields, Comm. Algebra 12 (1984), no. 23-24, 2871–2941. MR 764654
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Larry Joel Goldstein, Analytic number theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0498335
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 174-178
- MSC: Primary 11D41; Secondary 11C99
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801318-2
- MathSciNet review: 801318