On unimodular rows
HTML articles powered by AMS MathViewer
- by Moshe Roitman
- Proc. Amer. Math. Soc. 95 (1985), 184-188
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801320-0
- PDF | Request permission
Abstract:
We prove here, among other results, that if $({x_0}, \ldots ,{x_n})$ is a unimodular row over a commutative ring $A$, $n \geqslant 2$, $x \in A$ and \[ x \equiv {x_n}\quad \mod J(A{x_0} + \cdots + A{x_{n - 2}})\] then $({x_0}, \ldots ,{x_{n - 1}},{x_n}){ \sim _E}({x_0}, \ldots ,{x_{n - 1}},x)$.References
- S. K. Gupta and M. P. Murthy, Suslin’s work on linear groups over polynomial rings and Serre problem, ISI Lecture Notes, vol. 8, Macmillan Co. of India, Ltd., New Delhi, 1980. MR 611151
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842
- A. A. Suslin, Stably free modules, Mat. Sb. (N.S.) 102(144) (1977), no. 4, 537–550, 632 (Russian). MR 0441949
- Richard G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111–120. MR 469906, DOI 10.1090/S0002-9947-1978-0469906-4
- Leonid N. Vaserstein, Operations on orbits of unimodular vectors, J. Algebra 100 (1986), no. 2, 456–461. MR 840588, DOI 10.1016/0021-8693(86)90088-8
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 184-188
- MSC: Primary 13D15; Secondary 18F25, 19A13, 19B10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801320-0
- MathSciNet review: 801320