Class number relation between certain sextic number fields
HTML articles powered by AMS MathViewer
- by Akira Endô
- Proc. Amer. Math. Soc. 95 (1985), 199-204
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801323-6
- PDF | Request permission
Abstract:
The congruence relation modulo 7 between the class numbers of the real and imaginary sextic subfields of the extension of a quadratic number field obtained by adjoining a seventh root of unity is studied.References
- Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952 (German). MR 0049239
- Aichi Kudo, On a class number relation of imaginary abelian fields, J. Math. Soc. Japan 27 (1975), 150–159. MR 360520, DOI 10.2969/jmsj/02710150
- Sirpa Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics, vol. 797, Springer, Berlin, 1980. MR 584794, DOI 10.1007/BFb0088938
- Charles J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comp. 31 (1977), no. 140, 1019–1029. MR 498483, DOI 10.1090/S0025-5718-1977-0498483-X
- Charles J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), no. 144, 1261–1270. MR 502013, DOI 10.1090/S0025-5718-1978-0502013-4
- C. D. Walter, Kuroda’s class number relation, Acta Arith. 35 (1979), no. 1, 41–51. MR 536879, DOI 10.4064/aa-35-1-41-51
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 199-204
- MSC: Primary 11R29; Secondary 11R20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801323-6
- MathSciNet review: 801323