Pettis integrability and the equality of the norms of the weak$^ \ast$ integral and the Dunford integral
HTML articles powered by AMS MathViewer
- by Elizabeth M. Bator
- Proc. Amer. Math. Soc. 95 (1985), 265-270
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801336-4
- PDF | Request permission
Abstract:
If $(\Omega ,\sum ,\mu )$ is a perfect finite measure space and $X$ is a Banach space, then it is shown that ${X^ * }$ has the $\mu$-Pettis Integral Property if and only if \[ \left \| {({\text {wea}}{{\text {k}}^ * }) - \int \limits _\Omega {fd\mu } } \right \| = \left \| {({\text {Dunford}}) - \int \limits _\Omega {fd\mu } } \right \|\] for every bounded weakly measurable function $f:\Omega \to {X^ * }$.References
- Kevin T. Andrews, Universal Pettis integrability, Canad. J. Math. 37 (1985), no. 1, 141–159. MR 777045, DOI 10.4153/CJM-1985-011-5 E. M. Bator, Duals of separable Banach spaces, Ph. D. Thesis, Pennsylvania State University, 1983.
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), no. 4, 663–677. MR 487448, DOI 10.1512/iumj.1977.26.26053
- G. A. Edgar, Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579. MR 542944, DOI 10.1512/iumj.1979.28.28039
- D. H. Fremlin, Pointwise compact sets of measurable functions, Manuscripta Math. 15 (1975), 219–242. MR 372594, DOI 10.1007/BF01168675
- David H. Fremlin and Michel Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117–142. MR 544700, DOI 10.1007/BF01214191
- Robert F. Geitz, Geometry and the Pettis integral, Trans. Amer. Math. Soc. 269 (1982), no. 2, 535–548. MR 637707, DOI 10.1090/S0002-9947-1982-0637707-0
- Robert F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), no. 1, 81–86. MR 603606, DOI 10.1090/S0002-9939-1981-0603606-8 R. E. Huff, Remarks on Pettis integration, Preprint 1984.
- Lawrence H. Riddle and Elias Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), no. 3, 509–531. MR 786735
- Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr., Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 527–541. MR 703283, DOI 10.1512/iumj.1983.32.32038 L. H. Riddle and J. J. Uhl, Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of ${e_1}$, Proceedings, Martingale Theory in Harmonic Analysis and Banach Spaces, Cleveland, 1981 (J. A. Chao and W. A. Woyczynski, eds.), Lecture Notes in Math., vol. 939, Springer-Verlag, Berlin and New York. V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
- F. Dennis Sentilles and Robert F. Wheeler, Pettis integration via the Stonian transform, Pacific J. Math. 107 (1983), no. 2, 473–496. MR 705760, DOI 10.2140/pjm.1983.107.473
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 265-270
- MSC: Primary 46G10; Secondary 28B05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801336-4
- MathSciNet review: 801336