WEIGHTED REVERSE WEAK TYPE INEQUALITIES
FOR THE ERGODIC MAXIMAL FUNCTION
AND THE CLASSES $L \log^+ L$

KENNETH F. ANDERSEN AND WO-SANG YOUNG

Abstract. D. Ornstein proved that the ergodic maximal function satisfies a reverse weak type inequality, and from this he deduced that the integrability of the maximal function f^* implies that f belongs to $L \log^+ L$. Weighted analogues of these results are proved.

Let (Ω, Σ, μ) denote a probability space and let $T: \Omega \to \Omega$ be an invertible, measure preserving ergodic transformation. The Maximal Ergodic Theorem asserts that the maximal function f^* defined for nonnegative $f \in L^1(\mu)$ by

$$f^*(x) = \sup_{m,n \geq 0} \frac{1}{m+n+1} \sum_{k=-m}^{n} f(T^k x), \quad x \in \Omega,$$

satisfies the weak type inequality

$$\mu \{ x : f^*(x) > \lambda \} \leq \lambda^{-1} \int_{\{ x : f^*(x) > \lambda \}} f(x) \, d\mu(x) \leq \lambda^{-1} \int \Omega f(x) \, d\mu(x)$$

for all $\lambda > 0$. On the other hand, D. Ornstein [6] has shown that f^* also satisfies the reverse weak type inequality

$$\mu \{ x : f^*(x) > \lambda \} \geq (2\lambda)^{-1} \int_{\{ x : f^*(x) > \lambda \}} f(x) \, d\mu(x)$$

for all λ such that $\mu \{ x : f^*(x) > \lambda \} < 1$; in particular, this is the case if $\lambda > \lambda_f = \int_{\Omega} f(x) \, d\mu(x)$. From this he deduced that if f^* is integrable then f belongs to the class $L \log^+ L$. For elementary proofs of these results see the recent papers of R. L. Jones [3 and 4]. The purpose of this paper is to prove the following weighted version of Ornstein's result.

Theorem. Suppose u and v are nonnegative measurable functions on Ω with $u \in L^1(\mu)$. The following statements are equivalent:

(i) There is a constant C independent of f such that

$$(1) \quad \int_{\{ x : f^*(x) > \lambda \}} u(x) \, d\mu(x) \geq (C\lambda)^{-1} \int_{\{ x : f^*(x) > \lambda \}} f(x) v(x) \, d\mu(x)$$

holds for all λ such that $\mu \{ x : f^*(x) > \lambda \} < 1$.

Received by the editors December 18, 1984.

1980 Mathematics Subject Classification. Primary 28D05; Secondary 42B25.

Key words and phrases. Maximal functions, ergodic maximal function, weighted inequalities, $L \log^+ L$.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page

275
(ii) There is a constant D such that

$$v(x) \leq D \frac{1}{2n+1} \sum_{k=-n}^{n} u(T^k x)$$

holds for all $n \geq 0$ and almost all $x \in \Omega$.

Corollary. Suppose u and v satisfy (2) and that $\int_{\Omega} f^*(x) u(x) \, d\mu(x) < \infty$. Then f satisfies

$$\int_{\Omega} \left[f(x) \log^+ f(x) \right] v(x) \, d\mu(x) < \infty.$$

An analogue of the Theorem for the Hardy-Littlewood maximal function in \mathbb{R}^n was recently obtained by B. Muckenhoupt [5].

Examples of weight function pairs which satisfy (2) may be constructed as follows. A nonnegative weight function w is said to satisfy the A_1 condition [2, 7] if there is a constant C such that $w^*(x) \leq C w(x)$ a.e. in Ω. If $g \in L^1$ and $0 < \delta < 1$, it is shown in [7] that $w(x) = g^*(x)^\delta$ belongs to A_1. Now if w belongs to A_1, the Schwarz inequality for sums shows that

$$\left(2n + 1 \right)^2 \leq \left(\sum_{k=-n}^{n} w(T^k x) \right) \left(\sum_{k=-n}^{n} 1/w(T^k x) \right) \leq (2n+1) w^*(x) \left(\sum_{k=-n}^{n} 1/w(T^k x) \right) \leq C(2n+1) w(x) \left(\sum_{k=-n}^{n} 1/w(T^k x) \right).$$

Thus (2) is satisfied if $u(x) = v(x) = 1/w(x)$.

Let Z denote the set of integers and, for any finite subset I of Z, let $|I|$ denote its cardinality. If I consists of finitely many consecutive integers we say that I is an interval. If I is an interval, we write $2I$ for the largest interval containing I in its center and satisfying $|2I| < 2|I|$. Thus $2I$ is obtained by adjoining to I two intervals (possibly empty) of equal cardinality, one of which immediately precedes and one of which immediately succeeds I. As usual, if E is any set, $\chi_E(x)$ denotes the characteristic function of E.

We need the following lemma.

Lemma. Let I be an interval in Z and let J denote the complement of I in Z. Then I is the union of N pairwise disjoint intervals I_j, which satisfy

(i) $|I_j|/2 \leq \text{dist}(I_j, J) \leq 4|I_j|$, $1 \leq j \leq N$,

(ii) $\sum_{j} \chi_{2I_j}(n) \leq 4\chi_I(n)$ for all $n \in Z$.

Proof of the Lemma. Suppose $|I| > 2$. Otherwise the Lemma is trivially satisfied by choosing intervals I_j, each consisting of one integer. Let I_1 be the largest interval centered in I with $|I_1| \leq |I|/2$. Then $I \setminus I_1$ consists of two intervals, say I' and I'' with $|I'| = |I''| \geq |I|/4$. We shall show that I' is a union of pairwise disjoint intervals I_j, $j = 2, \ldots, N'$, such that (i) holds. If $|I'| \leq 2$ we may write I' as a union
of intervals each consisting of one integer and our selection procedure terminates; otherwise \(I' \) is the union of two intervals \(I'_- \) and \(I'_+ \) with \(d(I'_-, J) = 1 \) and \(|I'_+| - 1 \leq |I'_-| \leq |I'_+| \). Then \(I'_- \) is the union of two intervals \(I_2 \) and \(I_3 \) satisfying \(|I_2| - 1 \leq |I_3| \leq |I_2| \) and \(\text{dist}(I_3, I') = 1 \). Clearly, (i) is satisfied for \(j = 2, 3 \). This selection procedure is now repeated with \(I'_+ \) in place of \(I' \) and, continuing in this way, \(I' \) is eventually exhausted by the intervals \(I_j, j = 2, \ldots, N' \). It is easy to see that any element of \(I \) belongs to at most 3 of the intervals \(2I_j, 2 \leq j \leq N' \), and that all such \(2I_j \) are disjoint from \(I'' \). A similar construction is applied to express \(I'' \) as a union of intervals \(I_j, j = N' + 1, \ldots, N \). The intervals \(I_j, j = 1, \ldots, N \), so constructed clearly satisfy (ii).

Proof of the Theorem. Suppose that (1) holds. We will show that (2) holds with \(D = 2C \). Let \(A \in \Sigma \) with \(0 < \mu(A) < 1/2 \). Then \((\chi_A)^*(x) < 1 \) if \(x \notin A \), so the theorem of dominated convergence together with (1) shows

\[
\int_A u(x) \, d\mu(x) = \lim_{\lambda \to 1^-} \int_{\{x: (\chi_A)^*(x) > \lambda\}} u(x) \, d\mu(x) \
\geq \lim_{\lambda \to 1^-} \frac{1}{\lambda} \int_{\{x: (\chi_A)^*(x) > \lambda\}} \chi_A(x) v(x) \, d\mu(x) \
= \frac{1}{C} \int_A v(x) \, d\mu(x).
\]

Since \(A \) is arbitrary, this shows that \(u(x) \geq v(x)/C \) a.e. Thus (2) holds with \(D = 2C \) for the case \(n = 0 \). Now let \(n \geq 1 \). If \(A \in \Sigma \) with \(\mu(A) > 0 \) there is a subset \(B \) of \(A \) with \(\mu(B) > 0 \) such that \(T^j(B) \), \(j = -n, \ldots, n \), are pairwise disjoint. If \(x \notin \bigcup_{j=-n}^n T^j(B) \), then any 1 which occurs in the sequence \(\chi_B(T^jx) \) is both followed and preceded by at least \(n \) consecutive zeros; furthermore, \(\chi_B(T^kx) = 0 \) for \(-n \leq k \leq n \). For such \(x \) it then follows that \((\chi_B)^*(x) \leq 1/(n+1) \) and hence \(\{x: (\chi_B)^*(x) > 1/(n + 1)\} \) is a subset of \(\bigcup_{j=-n}^n T^j(B) \). Thus, (1) implies

\[
\int_B \sum_{j=-n}^n u(T^jx) \, d\mu(x) = \int_{\bigcup_{j=-n}^n T^j(B)} u(x) \, d\mu(x) \
\geq \int_{\{x: (\chi_B)^*(x) > 1/(n+1)\}} u(x) \, d\mu(x) \
\geq \frac{n + 1}{C} \int_{\{x: (\chi_B)^*(x) > 1/(n+1)\}} \chi_B(x) v(x) \, d\mu(x) \
= \frac{n + 1}{C} \int_B v(x) \, d\mu(x).
\]

Since \(A \) was arbitrary, it follows that (2) holds with \(D = 2C \) for \(n \geq 1 \).

Suppose now that (2) holds. We will show that (1) holds with \(C = 20D \).

Observe first that if \(I \) is any interval, then (2) implies that

\[
\sum_{j \in I} u(T^jx) \geq D^{-1} |I| v(T^kx) \quad \text{a.e.}
\]

for all \(k \in I \).
Let $\lambda > \lambda_f$ and $E = \{x: f^*(x) > \lambda\}$. Since T is ergodic it follows that for almost all $x \in E$ there are positive integers $r = r(x)$ and $s = s(x)$ such that $T^j x \in E$ if $-r + 1 \leq j \leq s - 1$ but $T^j x \notin E$ for $j = -r$ and $j = s$. For each positive integer i let $R_i = \bigcup_{j=0}^{i-1} T^j(B_i)$ where $B_i = \{x \in E: r(x) = 1 \text{ and } s(x) = i\}$. Then $\{R_i\}$ is a sequence of pairwise disjoint subsets of E, and for almost all $x \in E$ there is i, namely $i = r(x) + s(x) - 1$, such that $x \in R_i$. Thus, $E = \bigcup_{i=1}^{\infty} R_i$ and

\[
\int_E f(x) v(x) \, d\mu(x) = \sum_{i=1}^{\infty} \sum_{j=0}^{i-1} \int_{B_i} f(T^j x) v(T^j x) \, d\mu(x).
\]

Let i be fixed and let I_j denote the intervals generated by the Lemma for the interval $I = \{0, \ldots, i - 1\}$. Then (3) shows that

\[
\sum_{j=0}^{i-1} f(T^j x) v(T^j x) = \sum_{j,k \in I_j} f(T^j x) v(T^j x) \leq \sum_{j,k \in I_j} f(T^j x) \left(D|I_j|^{-1} \sum_{m=2|I_j|} u(T^m x) \right).
\]

Now part (i) of the Lemma shows that for each j there is an interval K_j with $|K_j| < 5|I_j|$ containing I_j and either -1 or i. Since neither $T^{-1} x$ nor $T^i x$ belongs to E, it follows that

\[
\sum_{k \in I_j} f(T^k x) \leq \sum_{k \in K_j} f(T^k x) \leq |K_j| \lambda < 5|I_j| \lambda.
\]

Using this on the right side of (5) shows, together with (ii) of the Lemma, that

\[
\sum_{j=0}^{i-1} f(T^j x) v(T^j x) \leq 5D\lambda \sum_{j,m \in 2|I_j|} u(T^m x) \leq 20D\lambda \sum_{m=0}^{i-1} u(T^m x)
\]

and, hence,

\[
\int_{R_i} f(x) v(x) \, d\mu(x) = \sum_{j=0}^{i-1} \int_{B_i} f(T^j x) v(T^j x) \, d\mu(x) \leq 20D\lambda \sum_{m=0}^{i-1} \int_{R_i} u(T^m x) \, d\mu(x) = 20D\lambda \int_{R_i} u(x) \, d\mu(x).
\]

In view of (4), summing this over the index i yields (1) with $C = 20D$.

Proof of the Corollary. Observe first that (2) implies $v(x) \leq Du(x)$ a.e. and thus we have

\[
\int_\Omega f(x) v(x) \, d\mu(x) \leq \int_\Omega f^*(x) v(x) \, d\mu(x) \leq D \int_\Omega f^*(x) u(x) \, d\mu(x) < \infty.
\]
Now if $\lambda > \lambda_f$, then $\mu \{ x : f^*(x) > \lambda \} < 1$, so (1) shows that

$$\int_\Omega \left[f(x) \log^+ \left(\frac{f(x)}{\lambda_f} \right) \right] v(x) \, d\mu(x) = \int_{\lambda_f}^{\infty} \frac{d\lambda}{\lambda} \int_{\{ x : f(x) > \lambda \}} f(x) v(x) \, d\mu(x)$$

is bounded above by

$$C \int_{\lambda_f}^{\infty} d\lambda \int_{\{ x : f^*(x) > \lambda \}} u(x) \, d\mu(x) \leq C \int_\Omega f^*(x) u(x) \, d\mu(x) < \infty$$

and this, together with (6), shows that

$$\int_\Omega \left[f(x) \log^+ f(x) \right] v(x) \, d\mu(x) < \infty.$$

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA T6G 2G1