SLLN AND CONVERGENCE RATES
FOR NEARLY ORTHOGONAL SEQUENCES
OF RANDOM VARIABLES

FERENC MÓRICZ

Abstract. Let \(\{X_k : k \geq 1\} \) be a sequence of random variables with finite second moments \(EX_k^2 = \sigma_k^2 < \infty \) for which \(|EX_k X_l| \leq \sigma_k \sigma_l \rho(|k - l|) \), where \(\{\rho(j) : j \geq 0\} \) is a sequence of nonnegative numbers with \(\sum_{j=0}^{\infty} \rho(j) < \infty \). In particular, in the case of orthogonality, \(\rho(j) = 0 \) for \(j \geq 1 \). We prove strong laws for the first arithmetic means \(\tau_n = n^{-1} \sum_{k=1}^{n} X_k \) and the Cesàro means

\[
\tau_n = n^{-1} \sum_{k=1}^{n} \left(1 - (k - 1)n^{-1}\right) X_k.
\]

The convergence rates are studied in the form \(P\{\sup_{n \geq p} |\xi_n| > \varepsilon\} \) and \(P\{\sup_{p \geq 2^p} |\tau_n| > \varepsilon\} \), where \(\varepsilon > 0 \) is fixed and \(p \) tends to \(\infty \). At the end, the case where \(\sum_{j=0}^{\infty} \rho(j) = \infty \) is also treated.

1. Introduction. Let \(\{X_k : k \geq 1\} \) be an orthogonal sequence of random variables (rv's), i.e.

\[
EX_k X_l = 0 \quad (k \neq l; k, l \geq 1)
\]

with finite second moments

\[
EX_k^2 = \sigma_k^2 \quad (k \geq 1).
\]

We will consider the first arithmetic means \(\xi_n = (1/n) \sum_{k=1}^{n} X_k \) as well as the Cesàro means (of order 1)

\[
\tau_n = \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{k - 1}{n}\right) X_k \quad (n \geq 1).
\]

A consequence of the Rademacher-Menshov theorem, well known in the theory of orthogonal series, is the following (see e.g. \[3, pp. 86, 87\]).

Theorem A. If \(\{X_k\} \) is an orthogonal sequence of rv's with (1.2) and

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} \left[\log(k + 1)\right]^2 < \infty,
\]

then

\[
\lim_{n \to \infty} \xi_n = 0 \quad a.s.
\]
In this paper the logarithms are to the base 2.

It is also pointed out that the sufficient condition (1.3) is the best possible (see Tandori [4]).

The next theorem is due to the author [2].

Theorem B. If \(\{X_k\} \) is an orthogonal sequence of rv’s with (1.2) and

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} < \infty,
\]

then

\[
\lim_{n \to \infty} \tau_n = 0 \quad a.s.
\]

2. Main results. The orthogonality condition (1.1) can be weakened in Theorems A and B maintaining conclusions (1.4) and (1.6), respectively.

To be more precise, we say that the sequence \(\{X_k\} \) of rv’s satisfying condition (1.2) is quasi-orthogonal (or nearly orthogonal) if there exists a sequence \(\{\rho(j)\}: j \geq 0 \) of nonnegative numbers such that

\[
|EX_kX_l| \leq \sigma_k\sigma_l|k-l| \quad (k, l \geq 1)
\]

and

\[
\sum_{j=0}^{\infty} \rho(j) < \infty.
\]

If \(EX_k = 0 \ (k \geq 1) \), then (2.1) is equivalent to

\[
|\text{Corr}(X_k, X_l)| \leq \rho(|k-l|) \quad (k, l \geq 1).
\]

Also, we may assume that \(\rho(0) = 1 \) and \(0 \leq \rho(j) \leq 1 \ (j \geq 1) \).

Now, the generalizations of Theorems A and B are the following:

Theorem 1. If \(\{X_k\} \) is a quasi-orthogonal sequence of rv’s, then (1.3) implies (1.4).

Theorem 2. If \(\{X_k\} \) is a quasi-orthogonal sequence of rv’s, then (1.5) implies (1.6).

Both theorems will be obtained as corollaries of the next two theorems stating convergence rates.

Theorem 3. If \(\{X_k\} \) is a quasi-orthogonal sequence of rv’s, then (1.3) implies, for every \(\epsilon > 0 \),

\[
P\left(\sup_{n \geq 2^p} |\tilde{s}_n| > \epsilon \right) = O\left(\frac{1}{2^{2p}} \sum_{k=1}^{2^p} \sigma_k^2 + \sum_{k=2^p+1}^{\infty} \frac{\sigma_k^2}{k^2} \left[\log(k+1) \right]^2 \right) \quad (p \geq 0).
\]

Theorem 4. If \(\{X_k\} \) is a quasi-orthogonal sequence of rv’s, then (1.5) implies, for every \(\epsilon > 0 \),

\[
P\left(\sup_{n \geq 2^p} |\tau_n| > \epsilon \right) = O\left(\frac{1}{2^{2p}} \sum_{k=1}^{2^p} \sigma_k^2 + \sum_{k=2^p+1}^{\infty} \frac{\sigma_k^2}{k^2} \right) \quad (p \geq 0).
\]

We note two other consequences of Theorems 3 and 4.
Corollary 1. Assume \(\{ X_k \} \) is a quasi-orthogonal sequence of rv’s and

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} [\log(k + 1)]^2 \lambda(k) < \infty,
\]

where \(\{ \lambda(k) : k \geq 1 \} \) is a nondecreasing sequence of positive numbers such that the sequence \(k^2/\lambda(k) : k \geq 1 \) is also nondecreasing and tends to \(\infty \). Then, for every \(\varepsilon > 0 \),

\[
\lim_{p \to \infty} \lambda(2^p) P\left(\sup_{n > 2^p} |t_n| > \varepsilon \right) = 0.
\]

Corollary 2. Assume \(\{ X_k \} \) is a quasi-orthogonal sequence of rv’s and

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} \lambda(k) < \infty,
\]

where \(\{ \lambda(k) \} \) is the same as in Corollary 1. Then, for every \(\varepsilon > 0 \),

\[
\lim_{p \to \infty} \lambda(2^p) P\left(\sup_{n > 2^p} |\tau_n| > \varepsilon \right) = 0.
\]

We briefly indicate, e.g., how Corollary 1 can be deduced from Theorem 3. It follows from (2.5) that (even dropping the factor \([\log(k + 1)]^2\)), via the Kronecker lemma (see e.g. [3, p. 35]),

\[
\lim_{p \to \infty} \frac{\lambda(2^p)}{2^{2p}} \sum_{k=1}^{2^p} \sigma_k^2 = 0.
\]

On the other hand, again by (2.5),

\[
\lim_{p \to \infty} \lambda(2^p) \sum_{k=2^p+1}^{\infty} \frac{\sigma_k^2}{k^2} [\log(k + 1)]^2
\leq \lim_{p \to \infty} \sum_{k=2^p+1}^{\infty} \frac{\sigma_k^2}{k^2} [\log(k + 1)]^2 \lambda(k) = 0.
\]

That is, (2.3) implies (2.6).

3. Auxiliary results.

Lemma 1. If \(\{ X_k \} \) is a sequence of rv’s satisfying conditions (1.2) and (2.1), then

\[
E\left[\sum_{k=a+1}^{a+n} X_k \right]^2 \leq \left(1 + 2 \sum_{j=1}^{n-1} \rho(j) \right) \sum_{k=n+1}^{a+n} \sigma_k^2 \quad (a \geq 0, n \geq 1).
\]
Proof. Squaring out, using (1.2) and (2.1), letting \(j = l - k \) and, finally, applying the Cauchy inequality yields (3.1):

\[
\sum_{k=a+1}^{a+n} X_k = \sum_{k=a+1}^{a+n} E X_k^2 + 2 \sum_{k=a+1}^{a+n} \sum_{l=k+1}^{a+n} E X_k X_l \\
\leq \sum_{k=a+1}^{a+n} \sigma_k^2 + 2 \sum_{k=a+1}^{a+n-1} \sum_{l=k+1}^{a+n} \sigma_k \sigma_l \rho(l - k) \\
= \sum_{k=a+1}^{a+n} \sigma_k^2 + 2 \sum_{j=1}^{n-1} \rho(j) \sum_{k=a+1}^{a+n-j} \sigma_k \sigma_{k+j} \\
\leq \left(1 + 2 \sum_{j=1}^{n-1} \rho(j) \right) \sum_{k=a+1}^{a+n} \sigma_k^2,
\]

since

\[
\sum_{k=a+1}^{a+n-j} \sigma_k \sigma_{k+j} \leq \left(\sum_{k=a+1}^{a+n-j} \sigma_k^2 \sum_{k=a+1}^{a+n-j} \sigma_{k+j}^2 \right)^{1/2} \\
= \left(\sum_{k=a+1}^{a+n-j} \sigma_k^2 \sum_{k=a+j+1}^{a+n} \sigma_k^2 \right)^{1/2} \leq \sum_{k=a+1}^{a+n} \sigma_k^2.
\]

In the proof of Theorem 4 we need a slightly more general form of Lemma 1.

Lemma 2. If \(\{X_k\} \) is a sequence of rv’s satisfying conditions (1.2) and (2.1), and \(\{b_k: k \geq 1\} \) is a sequence of numbers, then

\[
E \left[\sum_{k=a+1}^{a+n} b_k X_k \right]^2 \leq \left(1 + 2 \sum_{j=1}^{n-1} \rho(j) \right) \sum_{k=a+1}^{a+n} b_k^2 \sigma_k^2 \quad (a \geq 0, n \geq 1).
\]

Indeed, applying Lemma 1 for \(\{Y_k = b_k X_k\} \), we get immediately Lemma 2. The next lemma is a special case of the maximal inequality in [1, Theorem 3].

Lemma 3. If \(\{X_k\} \) is a sequence of rv’s such that condition (3.1) is satisfied, then

\[
E \left[\max_{1 \leq m \leq n} \left| \sum_{k=a+1}^{a+m} X_k \right| \right]^2 \leq \log^2 2n \left(1 + 2 \sum_{j=1}^{n-1} \rho(j) \right) \sum_{k=a+1}^{a+n} \sigma_k^2 \\
(a \geq 0, n \geq 1).
\]

Proof of Theorem 3. Obviously,

\[
P \left\{ \sup_{n > 2^p} |s_n| > \varepsilon \right\} \leq \sum_{q=p}^{\infty} P \left\{ \max_{2^q < n \leq 2^{q+1}} |s_n| > \varepsilon \right\}.
\]

A simple estimate shows

\[
\max_{2^q < n \leq 2^{q+1}} |s_n| \leq |s_{2^q}| + \frac{1}{2^q} \max_{2^q < n \leq 2^{q+1}} \left| \sum_{k=2^q+1}^{n} X_k \right|.
\]
On one hand, by (3.1) and (2.2),

\[(4.2)\quad E\xi_{2^q}^2 = O\left(\frac{1}{2^2q}\right) \sum_{k=1}^{2^q} \sigma_k^2.\]

On the other hand, by (3.3) and (2.2),

\[
E\left[\max_{2^q < n \leq 2^{q+1}} \left| \sum_{k=2^q+1}^{n} X_k \right| \right]^2 = O\left(1\right) \left[\log 2^{q+1}\right]^2 \sum_{k=2^q+1}^{2^{q+1}} \sigma_k^2
\]

\[
= O\left(1\right) \sum_{k=2^q+1}^{2^{q+1}} \sigma_k^2 \left[\log(k+1)\right]^2.
\]

Thus, by the Chebyshev inequality,

\[(4.3)\quad P\left(\max_{2^q < n \leq 2^{q+1}} |\xi_n| > \varepsilon\right) \leq P\left(|\xi_{2^q}| > \varepsilon \frac{E}{2}\right) + P\left(\max_{2^q < n \leq 2^{q+1}} \left| \sum_{k=2^q+1}^{n} X_k \right| > \varepsilon 2^{q-1}\right)
\]

\[
= O\left(1\right) \frac{1}{\varepsilon^2} \left(\sum_{k=2^q+1}^{2^{q+1}} \sigma_k^2 + \frac{1}{2^{2q}} \sum_{k=2^q+1}^{2^{q+1}} \sigma_k^2 \left[\log(k+1)\right]^2 \right).
\]

Keeping (4.1) in mind, simple calculations show

\[(4.4)\quad \sum_{q=p}^{\infty} \frac{1}{2^{2q}} \sum_{k=1}^{2^q} \sigma_k^2 = \sum_{k=1}^{2^p} \frac{1}{2^{2q}} \sum_{k=2^p+1}^{2^{q+1}} \sigma_k^2 + \sum_{q=2^p}^{\infty} \frac{1}{2^{2q}} \sum_{k=2^p+1}^{2^{q+1}} \sigma_k^2
\]

\[
\leq \frac{4}{3} \left(\frac{1}{2^{2p}} \sum_{k=2^p+1}^{2^{q+1}} \sigma_k^2 \right)
\]

and

\[(4.5)\quad \sum_{q=p}^{\infty} \frac{1}{2^{2q}} \sum_{k=2^p+1}^{2^{q+1}} \sigma_k^2 \left[\log(k+1)\right]^2 \leq 4 \sum_{k=2^p+1}^{2^{q+1}} \frac{\sigma_k^2}{k^2} \left[\log(k+1)\right]^2.
\]

Collecting (4.1) and (4.3)-(4.5) yields (2.3).

Proof of Theorem 4. Similarly to (4.1),

\[(4.6)\quad P\left(\sup_{n > 2^p} |\tau_n| > \varepsilon\right) \leq \sum_{q=p}^{\infty} P\left(\max_{2^q < n \leq 2^{q+1}} |\tau_n| > \varepsilon\right).
\]

This time we avoid using the maximal inequality (3.3). Instead, we estimate as follows:

\[
\max_{2^q < n \leq 2^{q+1}} |\tau_n| \leq |\xi_{2^q}| + |\tau_{2^q} - \xi_{2^q}| + \max_{2^q < n \leq 2^{q+1}} |\tau_n - \tau_{2^q}|,
\]

whence

\[(4.7)\quad P\left(\max_{2^q < n \leq 2^{q+1}} |\tau_n| > \varepsilon\right) \leq P\left(|\xi_{2^q}| > \varepsilon \frac{E}{3}\right) + P\left(|\tau_{2^q} - \xi_{2^q}| > \varepsilon \frac{E}{3}\right)
\]

\[
+ P\left(\max_{2^q < n \leq 2^{q+1}} |\tau_n - \tau_{2^q}| > \varepsilon \frac{E}{3}\right).
\]
According to this, we complete the proof in three steps:

(i) By (4.2) and (4.4),

\[
\sum_{q=p}^{\infty} P\left(|\xi_{2q}| > \frac{\varepsilon}{3} \right) \leq \frac{9}{e^2} \sum_{q=p}^{\infty} E\xi_{2q}^2 = O(1) \left(\frac{1}{e^2} \sum_{k=1}^{2p} \sigma_k^2 + \sum_{k=2^{p+1}}^{\infty} \frac{\sigma_k^2}{k^2} \right).
\]

(ii) Taking into account the representation

\[
\tau_{2q} - \xi_{2q} = -\frac{1}{2^{2q}} \sum_{k=2}^{2q} (k-1) X_k,
\]

via (3.2), (2.2) and (4.2),

\[
E[\tau_{2q} - \xi_{2q}]^2 = O(1) \frac{1}{2^{4q}} \sum_{k=2}^{2q} (k-1)^2 \sigma_k^2 = O(1) \frac{1}{2^{2q}} \sum_{k=2}^{2q} \sigma_k^2 = O(1) E\xi_{2q}^2.
\]

By this and (4.8),

\[
\sum_{q=p}^{\infty} P\left(|\tau_{2q} - \xi_{2q}| > \frac{\varepsilon}{3} \right) \leq \frac{9}{e^2} \sum_{q=p}^{\infty} E[\tau_{2q} - \xi_{2q}]^2 = O(1) \left(\frac{1}{e^2} \sum_{k=1}^{2p} \sigma_k^2 + \sum_{k=2^{p+1}}^{\infty} \frac{\sigma_k^2}{k^2} \right).
\]

(iii) By the Cauchy inequality,

\[
\max_{2^q < n \leq 2^{q+1}} |\tau_n - \tau_{2q}| \leq \sum_{n=2^q+1}^{2^{q+1}} |\tau_n - \tau_{n-1}| \leq \left(\sum_{n=2^q+1}^{2^{q+1}} n|\tau_n - \tau_{n-1}|^2 \right)^{1/2}.
\]

The representation

\[
\tau_n - \tau_{n-1} = \sum_{k=1}^{n} \left[\frac{(k-1)(2n-1)}{n^2(n-1)^2} - \frac{1}{n(n-1)} \right] X_k
\]

can be easily checked, whence, via (3.2) and (2.2),

\[
E[\tau_n - \tau_{n-1}]^2 = \frac{O(1)}{n^2(n-1)^2} \sum_{k=1}^{n} \sigma_k^2.
\]

Thus, by (4.2),

\[
\sum_{n=2^q+1}^{2^{q+1}} nE[\tau_n - \tau_{n-1}]^2 = O(1) \sum_{n=2^q+1}^{2^{q+1}} \frac{1}{n(n-1)^2} \sum_{k=1}^{n} \sigma_k^2
\]

\[
= O(1) \frac{1}{2^{2q}} \sum_{k=1}^{2^{q+1}} \sigma_k^2 = O(1) E\xi_{2q+1}^2.
\]

By this, (4.10) and (4.4),

\[
\sum_{p=0}^{\infty} P\left(\max_{2^q < n \leq 2^{q+1}} |\tau_n - \tau_{2q}| > \frac{\varepsilon}{3} \right) = O(1) \sum_{q=p}^{\infty} E\xi_{2q+1}^2
\]

\[
= O(1) \left(\frac{1}{2^{2p+2}} \sum_{k=1}^{2^{p+1}} \sigma_k^2 + \sum_{k=2^{p+1}+1}^{\infty} \frac{\sigma_k^2}{k^2} \right).
\]

Putting together (4.6)–(4.9) and (4.11) gives (2.4).
5. The case when \(\{X_k\} \) is not nearly orthogonal. In this concluding section we assume that conditions (1.2) and (2.1) are satisfied, but (2.2) is not, i.e.

\[
\sum_{j=0}^{\infty} \rho(j) = \infty.
\]

We will require, for the sake of simplicity in calculations, that the sequence

\[
\left\{ \frac{1}{n} \sum_{j=0}^{n-1} \rho(j) : n \geq n_0 \right\}
\]

is nonincreasing from some \(n_0 \) on.

It is easy to see that this requirement is equivalent to

\[
\rho(n) \leq \frac{1}{n} \sum_{j=0}^{n-1} \rho(j) \quad (n \geq n_0).
\]

The following three theorems can be proved by using methods similar to those in §4, and using Lemmas 4 and 5 below.

Theorem 5. If \(\{X_k\} \) is a sequence of rv’s satisfying (1.2), (2.1) and (5.2), then the condition

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} \left(\sum_{j=0}^{k-1} \rho(j) \right) \left[\log(k + 1) \right]^2 < \infty \quad (\rho(0) = 1)
\]

implies (1.4).

If the divergence in (5.1) is “fast enough” in the sense that there exist a number \(r > 1 \) and a positive integer \(p_0 \) such that

\[
\frac{\sum_{j=0}^{2^n-1} \rho(j)}{\sum_{j=0}^{2^n-1} \rho(j)} \geq r \quad (p \geq p_0; \rho(0) = 1),
\]

then the factor \(\left[\log(k + 1) \right]^2 \) in (5.3) becomes superfluous.

Theorem 6. If \(\{X_k\} \) is a sequence of rv’s satisfying (1.2), (2.1), (5.2) and (5.4), then the condition

\[
\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} \left(\sum_{j=0}^{k-1} \rho(j) \right) < \infty
\]

implies (1.4).

Theorem 7. If \(\{X_k\} \) is a sequence of rv’s satisfying (1.2), (2.1) and (5.2), then condition (5.5) implies (1.6).

Here we present only two lemmas, without entering into details. The first of them is a special case of the maximal inequality [1, Theorem 4].

Lemma 4. If \(\{X_k\} \) is a sequence of rv’s such that conditions (3.1) and (5.4) are satisfied, then

\[
E \left[\max_{1 \leq m \leq n} \left| \sum_{k=a+1}^{a+m} X_k \right|^2 \right] = O \left(\sum_{j=0}^{n-1} \rho(j) \right) \sum_{k=a+1}^{a+n} \sigma_k^2 \quad (a \geq 0, n \geq 1).
\]
This lemma is crucial in the proof of Theorem 6.
The second lemma is concerned with numerical series and can be easily checked.

Lemma 5. If condition (5.2) is satisfied, then

\[
\sum_{p:2^p \geq k} \frac{1}{2^{ap}} \sum_{j=0}^{2^p-1} \rho(j) = O\left(\frac{1}{k^{2a}} \sum_{j=0}^{k-1} \rho(j) \right) \quad (\alpha = 1 \text{ and } 2)
\]

and

\[
\sum_{n=k}^{\infty} \frac{1}{n^3} \sum_{j=0}^{n-1} \rho(j) = O\left(\frac{1}{k^2} \sum_{j=0}^{k} \rho(j) \right) \quad (k \geq 1).
\]

References

Bolyai Institute, University of Szeged, Aradi Vertanuk Tere 1, 6720 Szeged, Hungary

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47405