The first coefficient of the Conway polynomial
HTML articles powered by AMS MathViewer
- by Jim Hoste
- Proc. Amer. Math. Soc. 95 (1985), 299-302
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801342-X
- PDF | Request permission
Abstract:
A formula is given for the first coefficient of the Conway polynomial of a link in terms of its linking numbers. A graphical interpretation of this formula is also given.References
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- Cole A. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982), no. 1, 75–109. MR 642331, DOI 10.1090/S0002-9947-1982-0642331-X
- Fujitsugu Hosokawa, On $\nabla$-polynomials of links, Osaka Math. J. 10 (1958), 273–282. MR 102820
- Jim Hoste, The Arf invariant of a totally proper link, Topology Appl. 18 (1984), no. 2-3, 163–177. MR 769289, DOI 10.1016/0166-8641(84)90008-7
- Louis H. Kauffman, The Conway polynomial, Topology 20 (1981), no. 1, 101–108. MR 592573, DOI 10.1016/0040-9383(81)90017-3
- Hitoshi Murakami, The Arf invariant and the Conway polynomial of a link, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 335–344. MR 769040
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 299-302
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1985-0801342-X
- MathSciNet review: 801342