ON A QUESTION OF ARCHANGELSKIJ CONCERNING LINDELÖF SPACES WITH COUNTABLE PSEUDOCHARACTER

K. ALSTER

Abstract. We give a negative solution to Archangelskij's problem by showing that there exists a Lindelöf space with countable pseudocharacter which does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

The aim of this note is to construct, in the usual axioms of set theory, an example mentioned in the abstract (see [Ar, Hypotheses 5.4 and 5.5]). S. Shelah obtained, under some set-theoretical assumptions, a Lindelöf space of cardinality greater than 2^ω with countable pseudocharacter (see [S and HJ]). From the well-known Archangelskij theorem it follows that Shelah's space does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

Let us denote by Q the set of rational numbers of the unit interval. The symbols ω and ω_1 stand for the first infinite and first uncountable ordinal numbers respectively.

Example. There is a Lindelöf space X with countable pseudocharacter which does not admit a continuous one-to-one mapping onto a Hausdorff space satisfying the first axiom of countability.

Construction of X. There exists a family $\{A_\alpha : 1 \leq \alpha < \omega_1\}$ such that

1. A_α is a countable set consisting of strictly increasing sequences of Q of length α for $1 \leq \alpha < \omega_1$;
2. if $\alpha < \beta < \omega_1$, then $p_\alpha(A_\beta) = A_\alpha$; p_α stands for the projection onto the first α coordinates;
3. if $a \in A_\alpha$ for $1 \leq \alpha < \omega_1$, then for every limit ordinal number $\beta < \alpha$, $a(\beta) = \sup\{a(\lambda) : \lambda < \beta\}$ and $sup\{a(\lambda) : \lambda < \alpha\}$ are rational numbers of Q;
4. if $\alpha < \beta < \omega_1$, $a \in A_{\alpha+1}$, $r \in Q$ and $a(\alpha) < r$, then there exists $b \in A_{\beta+1}$ such that $p_{\alpha+1}(b) = a$ and $b(\beta) = r$ (see [J, p. 91, the construction of the Aronszajn tree]).

Let us attach to $a \in A_\alpha$, for $1 \leq \alpha < \omega_1$, $x_a \in Q^{\omega_1}$ defined by

$$x_a(\beta) = \begin{cases} a(\beta), & \text{if } \beta < \alpha, \\ \sup\{a(\lambda) : \lambda < \alpha\}, & \text{if } \beta \geq \alpha. \end{cases}$$

Let $X = \bigcup\{X_\alpha : 1 \leq \alpha < \omega_1\}$, where $X_\alpha = \{x_a : a \in A_\alpha\}$, be a subspace of Q^{ω_1}. In [Al] it was proved that $Y \times X^\omega$ is Lindelöf provided that Y is a hereditarily Lindelöf space. We shall sketch the proof of the Lindelöf property in X for the sake of

Received by the editors February 29, 1984.

1980 Mathematics Subject Classification. Primary 54D20, 54A25.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page
completeness. Let \mathcal{B} be a countable base of Q and \mathcal{V} an open covering of X. For $x \in X_\alpha$, $\alpha < \omega_1$, let

$$\mathcal{A}(x) = \left\{ B \in \mathcal{B} : x(\alpha) \in B \text{ and there are } \alpha < \beta(x, B) < \omega_1 \text{ and } V \in \mathcal{V} \text{ such that } F(x, B, \beta(x, B)) = \left(\prod_{\lambda < \omega_1} F_\lambda \right) \cap X \subset V \right\},$$

where

$$F_\lambda = \begin{cases} \{ x(\lambda) \}, & \text{if } \lambda \leq \alpha, \\ B, & \text{if } \lambda = \beta(x, B), \\ Q, & \text{otherwise}. \end{cases}$$

Since X consists of increasing sequences, $\mathcal{A}(x) \neq \emptyset$ for every $x \in X$. Let

$$\beta_1 = \sup \{ \beta(x, B) : x \in X_1 \text{ and } B \in \mathcal{A}(x) \}. $$

Since X_1 and $\mathcal{A}(x)$, for $x \in X_1$, are countable sets, $\beta_1 < \omega_1$. If β_n is defined, then let

$$\beta_{n+1} = \sup \{ \beta(x, B) : x \in \bigcup \{ X_\lambda : \lambda \leq \beta_n + 1 \} \text{ and } B \in \mathcal{A}(x) \}$$

and

$$\beta = \sup \{ \beta_n : n \in \mathbb{N} \}. $$

To finish the proof of the Lindelöf property of X it is enough to show that

$$X = \bigcup \{ F(x, B, \beta(x, B)) : x \in \bigcup \{ X_\lambda : \lambda < \beta \} \text{ and } B \in \mathcal{A}(x) \}. $$

Let x be an element of X_α for $\alpha \geq \beta$. Then $p_\beta(x)$ belongs to A_β. Let x' be a point of X_β such that $p_\beta(x') = p_\beta(x)$. There exist $B \in \mathcal{B}$, α_1 and α_2 and $V \in \mathcal{V}$ such that $x'(\beta) \in B$, $\alpha_1 < \beta < \alpha_2$ and $F = (\prod_{\lambda < \omega_1} F_\lambda) \cap X \subset V$, where

$$F_\lambda = \begin{cases} \{ x'(\lambda) \}, & \text{if } \lambda < \alpha_1, \\ B, & \text{if } \lambda = \alpha_2, \\ Q, & \text{otherwise}. \end{cases}$$

Without loss of generality we can assume that $\sup \{ x'(\lambda) : \lambda < \alpha_1 \} \in B$. Let v be an element of X_α such that $p_\beta(v) = p_\beta(x')$. Then $B \in \mathcal{A}(v)$ and $\beta(v, B) < \beta < \alpha_2$. It is easy to see that $x' \in F(v, B, \beta(v, B))$. Since $p_{\beta_1}^{-1} p_\beta(F(v, B, \beta(v, B))) = F(v, B, \beta(v, B))$ and $p_\beta(x') = p_\beta(x)$, $x \in F(v, B, \beta(v, B))$. We conclude that X is a Lindelöf space.

If $x \in X_\alpha$, $\alpha < \omega_1$, then $\{ x' \in X : p_{\alpha+2}(x') = p_{\alpha+2}(x) \} = \{ x \}$ and $p_{\alpha+2}(X)$ is countable, so $\{ x \}$ is a G_δ-subset of X.

To finish the proof of the properties of X it is enough to show that X does not admit a weaker Hausdorff topology τ which satisfies the first axiom of countability. Suppose not and let τ be a weaker Hausdorff topology on X satisfying the first axiom of countability. If $x \in X$ then there exists $\beta(x) < \omega_1$ such that for every open, in τ, neighbourhood U of x there is a basic open neighbourhood $B(U) = (\prod_{\lambda < \omega_1} B_\lambda(U)) \cap X$ of x, with respect to the Tychonoff topology, such that $B_\lambda(U) = Q$ for $\lambda \geq \beta(x)$ and $B(U) \subset U$. The existence of $\beta(x)$ is an immediate consequence of the fact that τ satisfies the first axiom of countability. Let $\beta_1 = \sup \{ \beta(x) : x \in X_1 \}$. If β_n is defined, then let

$$\beta_{n+1} = \sup \{ \beta(x) : x \in \bigcup \{ X_\lambda : \lambda \leq \beta_n + 1 \} \}.$$
and \(\beta = \sup(\beta_n : n \in \mathbb{N}) \). Notice that \(\beta \) is a limit ordinal number less than \(\omega_1 \). Let \(x_1 \) and \(x_2 \) be points of \(X_\beta \) and \(X_{\beta+2} \), respectively, such that \(p_{\beta+1}(x_1) = p_{\beta+1}(x_2) \) and \(x_1(\beta + 1) \neq x_2(\beta + 1) \). To prove that \(\tau \) is not a Hausdorff topology it is enough to show that if \(U \) is an open neighbourhood of \(x_1 \), with respect to \(\tau \), then there is a sequence \((y_n)_{n=1}^{\infty} \) of points of \(U \) converging to \(x_2 \), with respect to the Tychonoff topology. Let \(B \in \mathcal{B} \) and \(\alpha_1, \alpha_2 < \omega_1 \) be such that \(\beta_1 < \alpha_1 < \beta < \alpha_2 \), \(x_1(\lambda) \in B \) if \(\lambda \geq \alpha_1 \) and \(F = (\Pi_{\lambda<\omega_1}F_\lambda) \cap X \subset U \), where

\[
F_\lambda = \begin{cases}
\{ x_1(\lambda) \}, & \text{if } \lambda \leq \alpha_1, \\
B, & \text{if } \lambda = \alpha_2, \\
Q, & \text{otherwise}.
\end{cases}
\]

Let \(z_n \) be a point of \(X_{\alpha_n+1} \), where \(\alpha_n = \max(\beta_n, \alpha_1) \), such that \(p_{\alpha_n+1}(z_n) = p_{\alpha_n+1}(x_1) \). Since \(\beta \) is a limit ordinal number, \(\alpha_n + 1 < \beta \). By the definition of \(\beta(z_n) \), there exists a basic open neighbourhood \(G(z_n) = (\Pi_{\lambda<\omega_1}G_\lambda(z_n)) \cap X \) of \(z_n \), with respect to Tychonoff topology, such that \(G_\lambda(z_n) = Q \), if \(\lambda \geq \beta(z_n) \) and \(G(z_n) \subset U \). Notice that \(\beta(z_n) < \beta \) for \(n \in \mathbb{N} \). Let \(y_n \) be an element of \(G(z_n) \cap X_{\beta+2} \) such that \(p_{\alpha_n+1}(z_n) = p_{\alpha_n+1}(y_n) \) and \(y_n(\lambda) = x_2(\lambda) \) for \(\lambda \geq \beta \). The existence of \(y_n \) is an easy consequence of (4), \(\beta(z_n) < \beta \), \(z_n(\lambda) \leq x_1(\lambda) \), for \(\lambda < \omega_1 \), \(p_{\beta+1}(x_1) = p_{\beta+1}(x_2) \), and \(x_1(\beta + 1) < x_2(\beta + 1) \). If \(G = (\Pi_{\lambda<\omega_1}G_\lambda) \cap X \) is a basic open neighbourhood of \(x_2 \), in the Tychonoff topology, \(\alpha = \sup(\lambda < \beta : G_\lambda \neq Q) \) and \(k \) is such that \(\beta_k > \alpha \), then \(y_n \in G \) provided that \(n \geq k \), so we conclude that \((y_n)_{n=1}^{\infty} \) converges to \(x_2 \) in the Tychonoff topology.

Remark. Let \(Z \) be a subspace of \(I^{\omega_1} \), where \(I \) stands for the unit interval, of all points of \(I \) satisfying the following conditions:

(i) for every \(\epsilon > 0 \) and \(z \in Z \), \(\{ \alpha < \omega_1 : z(\alpha) > \epsilon \} \) is finite;

(ii) for every \(z \in Z \), \(\{ \alpha < \omega_1 : z(\alpha) > 0 \} \) is an initial interval of \(\omega_1 \).

It is easy to see that \(Z \) has countable pseudocharacter. In [C] it was proved that \(Z \) has the Lindelöf property. Using our method one can show that \(Z \) does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

References

Institute of Mathematics of the Polish Academy of Sciences, Sniadeckich 8, 00-950 Warszawa, Poland