Exponential sums and forms for varieties over finite fields
HTML articles powered by AMS MathViewer
- by Richard G. Sarkisian
- Proc. Amer. Math. Soc. 95 (1985), 372-374
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806073-8
- PDF | Request permission
Abstract:
We prove that the roots of the $L$-function of an Artin-Schreier cover of an algebraic variety defined over a finite field differ from the roots of the zeta function of the cover by roots of unity.References
- Enrico Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71–105. MR 200267, DOI 10.2307/2373048
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 372-374
- MSC: Primary 11G25; Secondary 14G10, 14G15
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806073-8
- MathSciNet review: 806073