ON SOME PROPERTIES OF THE BANACH ALGEBRAS $A_p(G)$ FOR LOCALLY COMPACT GROUPS

Dedicated to my teacher Rafael Artzy with gratitude and respect

EDMOND E. GRANIRER

Abstract. We strengthen and improve theorems of Choquet-Deny and of Foguel concerning convolution equations and iterates of convolution of a measure to all algebras $A_p(G)$ and all locally compact groups. Furthermore, we improve results of H. P. Rosenthal on ideals of $A(G)$ to the algebras $A_p(G)$ and show that some hold for amenable groups but not for free nonabelian groups. Finally, we improve a (possibly) weak version of a theorem of Gilbert on projections onto some subspaces of $L^\infty(G)$ to all locally compact groups.

Theorem (Foguel). Let G be an l.c.a. group and $\mu \in M(G)$ be such that $\sup_n \|\mu^n\| < \infty$. Then $\lim \|\mu^n \ast f\|_1 = 0$ for each $f \in I_e = \{ f \in L^1(G); f(e) = 0 \}$ if and only if $|\mu(\gamma)| < 1$ for all $\gamma \in \Gamma \setminus \{ e \}$.

Here μ^n is the n-times convolution power of μ and e denotes the unit of Γ.

Theorem (Choquet-Deny). Let G be an l.c.a. group and $\mu \in M(G)$. The following are equivalent:

(i) for $f \in L^\infty(G)$, $\mu \ast f = f$ implies $f = \text{constant}$.
(ii) $\mu(\gamma) \neq 1$ for $\gamma \in \Gamma \setminus \{ e \}$.

We strengthen and improve (the dual version of) both results to all locally compact groups and all algebras $A_p(G)$, $B_p^M(G)$, $PM_p(G)$ in the first two theorems of the paper and in the remarks after them. (If G is abelian and $p = 2$, then $A_2(G) = A(G) = L^1(\Gamma)$, $B_2^M(G) = B(G) = M(\Gamma)$, and $PM_2(G) = L^\infty(\Gamma)$.) Furthermore, we point out that if, for some $\lambda \in \mathbb{C}$ and $u \in B_p^M$, $E_\lambda = \{ \phi \in PM_p; u \cdot \phi = \lambda \phi \}$ is a reflexive Banach space and if G is amenable, then E_λ is finite dimensional. This is false if G is discrete and contains the free group on two generators (via existence of Leinert sets in G).

In Theorem 4 we improve a result of H. P. Rosenthal [18, p. 39] to all amenable groups G. We show that, if for some closed ideal I, A_p/I is a reflexive Banach space and if G is amenable, then A_p/I is finite dimensional. Again, using Leinert sets, we

Received by the editors September 11, 1984.
1980 Mathematics Subject Classification. Primary 43A30, 43A25.

1 Thanks are due to T. Ramsey for providing us with a preprint of [13] and for discussions related to it.
get a counterexample in case G is discrete and contains a free group on two
generators.

In Theorem 5 we improve the following result of H. P. Rosenthal, which is part of
Theorem 2.12 on p. 53 in [18]: If G is any nondiscrete locally compact abelian group,
then any nonzero ideal of A(G) contains an isomorphic copy of l^1. We show that this
result is true for all nondiscrete G and for all algebras A_p(G). This is false if G is
discrete and p = 2, as shown by M. A. Picardello [21].

In Theorem 6 we prove a result related to the beautiful main theorem of J. E.
Gilbert on existence of projections onto w* closed translation invariant subspaces of
L^∞(G). Again this is done in the framework of the algebras A_p, B^M_p, PM_p.

The reader not familiar with the algebras A_p may find the results that follow of
interest even for p = 2 and abelian G.

Definitions and notation. C will denote the complex field. G will always denote a
locally compact group, C_0(G) (C_c(G)) the continuous functions on G, which tend
to 0 at ∞ (with compact support). L^p(G), 1 ≤ p ≤ ∞, will be the usual spaces of
p-integrable functions with respect to a fixed left Haar measure m and ∥f∥_p =
(∫ |f|^p dm)^1/p, ∥f∥_∞ = ess sup |f(x)|. We follow Herz [8] for notation and properties
of the Banach algebras A_p(G) = A_p. One has that A_2(G) = A(G) = the Fourier
algebra of G à la Eymard [2]. We denote by ∥v∥_A_p the norm in A_p (or just ∥v∥
when the context is clear). We denote by B^M_p = B^M_p(G) the set of bounded complex
functions u on G such that w ∈ A_p(G) for all v ∈ A_p. The norm in B^M_p is given by
∥u∥_B^M_p = sup{∥uv∥_A_p; ∥v∥_A_p = 1}. If G is abelian with dual Γ, then A_2(G) = A(G) =
L^1(Γ)∗ and B^M_p(G) = B(G) = M(Γ), where M(Γ) is the Banach algebra of bounded
complex measures on Γ and * denotes Fourier transform. PM_p(G) is the Banach
space dual of A_p as in [8]. If G is abelian, then PM_2(G) = L^∞(Γ). We define the
module action of B^M_p on PM_p by ⟨φ, w⟩ for φ ∈ PM_p, v ∈ A_p, u ∈ B^M_p. If v ∈ A_p, then supp v denotes the closure in G of {x; v(x) ≠ 0}.

If C is a subset of A_p, then C will denote the norm closure of C in A_p.

Some interesting properties of the algebras A_p(G) for abelian G have been

If X is a Banach space, then L(X) will denote the bounded linear operators T:
X → X with ∥T∥ = sup{∥Tx∥; ∥x∥ = 1}. If A, B are subsets of C, then A ~ B will
denote the set-theoretical difference of A and B. And if τ is a topology on C, then
τ cl A will denote the τ-closure of A in C.

The following lemma was obtained independently of the proofs given in [13].

Lemma 1. Let u ∈ B^M_p(G) be such that |u(x)| ≤ 1 for all x and, let L = {x;
|u(x)| = 1}. If v ∈ C_00 ∩ A_p(G) is such that {supp v} ∩ L = ∅, then ∥u^n v∥_A_p → 0
as n → ∞. (L = ∅ is allowed.)

Proof. Let S = supp v. S is compact and there exists a symmetric neighborhood
of e, V such that SV^2 ∩ LV = ∅ and V is compact. For x in G define
g(x) = λ(V)^{-1}[1_{SV} * 1_{V}](x) = λ(V)^{-1}(xV ∩ SV).

Then g ∈ A_p by the definition of A_p, g(x) = 1 on S, g(x) = 0 if x is off SV^2 and
0 ≤ g(x) ≤ 1 for all x. Furthermore, ug ∈ A_p ∩ C_00. Hence |u(x)g(x)| < 1 for all x

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THE BANACH ALGEBRAS $A_p(G)$

in G (if $x \in L$ then $g(x) = 0$, and if $x \notin L$ then $|u(x)| < 1$, while $0 \leq g \leq 1$). Let $d = \sup\{|u(x)g(x)|; x \in G\} < 1$. The maximal ideal space of $A_p(G)$ is G [8, p. 102], hence the spectral radius of ug is $d = \lim_n\|u^n\|^{1/n} < 1$. Now choose $\delta > 0$ such that $d + \delta < 1$. Then for some n_0 we have $\|u^n\|_{A_p} < (d + \delta)^n$ if $n \geq n_0$. Hence $\|u^n\|_{A_p} \to 0$. But $g^n(x) = 1$ if $x \in S$; thus $g^n = v$. It follows that

$$\|u^n v\|_{A_p} = \|u^n g^n v\|_{A_p} \leq \|u^n g^n\|_{A_p} \|v\|_{A_p} \to 0.$$

Remark 1. Note that no assumption on the boundedness of $\|u^n\|_M$ is made in the above lemma. If, however, $\sup\|u^n\| = C < \infty$, then $|u^n(x)| \leq C$ for all n; thus $|u(x)| \leq 1$ for all x.

Let $L \subset G$ be closed. Let $J_L = \{v \in A_p \cap C_0; \supp v \cap L = \emptyset\}$ and $I_L = \{v \in A_p; v = 0$ on $L\}$. Clearly $J_L \subset I_L$.

Remark 2. If $u \in B_p^\infty$ is such that $\|u^n v\| \to 0$ for each $v \in J_L$ (where $L \subset G$ is any closed set), then $|u(x)| < 1$ for each $x \in G \sim L$. Since if $|u(x_0)| = 1$, $x_0 \in G \sim L$, then there is some $v \in J_L$ such that $v(x_0) = 1$. Then $1 = \|u^n(x_0) v(x_0)\| \leq \|u^n v\|$.

Theorem 2. Let $u \in B_p^\infty(G)$ be such that $\sup\|u^n\|_M = C < \infty$, and let $L = \{x; |u(x)| = 1\}$. Then $\|u^n v\|_{A_p} \to 0$ for each $v \in J_L$.

(\star) If L is a set of spectral synthesis then $\|u^n v\|_{A_p} \to 0$ for each $v \in I_L$.

Proof. Let $v \in J_L$, $\epsilon > 0$. Let $v_0 \in J_L$ be such that $\|v - v_0\| < \epsilon$. Then

$$\|u^n v\| \leq \|u^n (v - v_0)\| + \|u^n v_0\| \leq C\epsilon + \|u^n v_0\| \to C\epsilon$$

by the above lemma. If L has spectral synthesis, then $J_L = I_L$.

Remarks. In many cases the condition $\sup\|u^n\|_M < \infty$ forces the set L to be a set of spectral synthesis:

(a) Let $p = 2$ and G abelian. Assume that $u \in B(G) = M(\hat{G})$ is such that $\sup\|u^n\|_B(G) < \infty$. Then $\sup\{|u^n(x); x \in G\} \leq 1$ and $L = \{x; |u(x)| = 1\}$ is a closed subset of the coset ring of G and, as such, is even a strong Ditkin set, by J. E. Gilbert [5, 6] or B. Schreiber [15, Theorem 6.2 and 14, Theorem 2.6]. A fortiori, L is a set of spectral synthesis.

Foguel's result is thus improved in the

Corollary. Let G be l.c.a., $\mu \in M(G)$ satisfy $\sup\|\mu^n\| < \infty$, and let $L = \{\gamma \in \Gamma; |\hat{\mu}(\gamma)| = 1\}$. Then $\|\mu^n \ast f\|_1 \to 0$ iff $f \in I_L = \{f \in L^1(G); \hat{f} = 0$ on $L\}$. (Since clearly $|\hat{f}(r)| \leq \|\mu^n \ast f\|_1$ if $r \in L$.)

(b) Let $p = 2$, G arbitrary. Let $B(G)$ be as in [2], and let $u \in B(G) \subset B_2^\infty(G)$ be a positive definite function such that $u(e) = 1$. Then $\|u\|_{B(G)} = 1$ and $L = \{x; |u(x)| = 1\}$ is a closed (not necessarily normal) subgroup of G. Then $\|u^n\|_M = \|u^n\|_{B(G)} = 1$ and L has spectral synthesis, as shown by Takesake and Tatsuma in [16]. If $u \in B(G)$ only satisfies $|u(x_0)| = \|u\| = 1$ at some x_0 in G, then it can easily be shown that $\sup\|u^n\| < \infty$ and $L = \{x; |u(x)| = 1\} = x_0 H$ for some closed subgroup $H \subset G$. Again L is a set of synthesis. If now $p \neq 2$, then closed subgroups $H \subset G$ are known only to have local spectral synthesis, i.e., $I_H \cap C_0 \subset J_H$; see Herz [8, p. 93].
(c) If $1 < p < \infty$, G arbitrary and $u \in B^M_p(G)$ is such that $\sup_n ||u^n|| < \infty$, let $L = \{x; |u(x)| = 1\}$. Then $||u^n v||_{A_p} \to 0$ only for $v \in \text{Jac}_L$. It seems to be a hard, open question whether L has (local) spectral synthesis in this case.\(^2\)

In the following, (i) improves the Choquet-Deny theorem [1, 13].

\textbf{Theorem 3.} Let $u \in B^M_p(G)$, $\lambda \in \mathbb{C}$ and $E_\lambda = \{\phi \in PM_p; u \cdot \phi = \lambda \phi\}$.

(i) dim $E_\lambda = n < \infty$ if and only if $u^{-1}\{\lambda\}$ is finite or void. In this case dim $E_\lambda = \text{card } u^{-1}\{\lambda\}$ and $E_\lambda = \{\Sigma a_i \delta_{a_i}; a_i \in u^{-1}\{\lambda\}, \alpha_i \in \mathbb{C}\}$. Note that $n = 0$ (i.e. $E_\lambda = \{0\}$) iff $u^{-1}\{\lambda\} = \emptyset$.

(ii) If G is amenable and $(E_\lambda, || \cdot ||_{PM_p})$ is a reflexive Banach space, then E_λ is finite dimensional.

(iii) If G is discrete and contains the free group on two generators, then there exists $u \in B^M_2(G)$ for which $E_1 = \{\phi \in PM_2; u \cdot \phi = \phi\}$ is isomorphic to l^2 (a fortiori is reflexive infinite dimensional).

\textbf{Remark.} The reader should note that if $G = R = \hat{R}$ and $p = 2$, then $PM_2 = L^\infty(\hat{R}) = L^\infty(R)$ and every separable Banach space (reflexive or not) is isometric to a subspace of PM_2.

\textbf{Proof.} (i) If $v \in A^*_p, \phi \in PM_p = A^*_p$, then $\langle u \cdot \phi, v \rangle = \langle \phi, uv \rangle$. If $\phi \in E_\lambda, v \in A^*_p$, then $u \cdot (v \cdot \phi) = v \cdot (u \cdot \phi) = \lambda v \cdot \phi$. Thus E_λ is an A^*_p-submodule of PM_p which is w^* closed. For any $a \in G, u \cdot \delta_a = u(a) \delta_a$. Thus $\{\delta_a; \delta_a \in E_\lambda\} = \{\delta_a; a \in u^{-1}\{\lambda\}\}$. The δ_a's are linearly independent; thus dim $E_\lambda \geq \text{card } u^{-1}\{\lambda\}$. Assume now that $u^{-1}\{\lambda\} = \{a_1, \ldots, a_n\}$ is finite. If $\Phi \in E_\lambda$, any $x \in \text{supp } \Phi$ is such that δ_x is a w^* limit of a net $v_n \cdot \Phi$ with $v_n \in A^*_p$ (see [8, pp. 101, 118]). Hence $\delta_x \in E_\lambda$ and $x \in u^{-1}\{\lambda\} = \{a_1, \ldots, a_n\}$. A routine, well-known argument (see for example [7, proof of Theorem 1.3]) shows that $\Phi = \Sigma a_i \delta_{a_i}$ for some $a_i \in \mathbb{C}$. Thus dim $E_\lambda = \text{card } u^{-1}\{\lambda\}$ and $E_\lambda = \{\Sigma a_i \delta_{a_i}; a_i \in \mathbb{C}, a_i \in u^{-1}\{\lambda\}\}$ in this case. Note that $E_\lambda = \{0\}$ iff $u^{-1}\{\lambda\} = \emptyset$ is just the Tauberian condition (T) [8, p. 101].

(ii) If G is amenable, any norm closed A^*_p-submodule of PM_p which is reflexive is finite dimensional by our Theorem 1.3 in [7].

(iii) In this case $PM_2 \subset l^2(G)$ and G contains an infinite Leinert set L, i.e., a set L such that the subspace $N = \{\phi \in PM_2; \phi = 0 \text{ off } L\} = l^2(L)$ (as sets) and, for some $c > 0$, $||\phi||_2 \leq ||\phi||_{PM_2} \leq c||\phi||_2$ for all $\phi \in N$ (see [9, Satz 1]). A result of Figa-Talamanca and Picardello [3] implies that $1_L \in B^M_2(G)$; thus $N = \{\phi \in PM_2; 1_L \cdot \phi = \phi\}$. If $u = 1_L$ and $\lambda = 1$ then $E_1 = \{\phi \in PM_2; 1_L \cdot \phi = \phi\} = N$ is isomorphic to l^2.

H. P. Rosenthal proves in [18, p. 39] that if G is abelian and $E \subset G$ closed, then A_2/I_E is reflexive iff E is finite.

We improve the result in [18] to all amenable groups G and all $1 < p < \infty$. We also show that Rosenthal's result is false for $p = 2$ and discrete G which contains some free nonabelian subgroup.

If $I \subset A^*_p$ is a closed subspace, A^*_p/I is equipped with the quotient norm.

\(^2\)If the closed set L is a coset of an amenable or normal subgroup H (finite, compact, abelian or solvable are such), one still has that $\text{Jac}_L = I_L$ (see [8, pp. 92, 103] for more).
Theorem 4. Let \(I \subset A_p(G) \) be a closed ideal.

(a) If \(G \) is amenable, then \(A_p/I \) is reflexive if and only if it is finite dimensional. (Thus, if \(E \subset G \) is closed then \(A_p(E) = A_p/I_E \) is reflexive iff \(E \) is finite.)

(b) If \(G \) is discrete and contains the free group on two generators, then there is an infinite set \(E \subset G \) such that \(A_2(E) \) is isomorphic to \(l^2 \) (a fortiori is reflexive).

Proof. (a) Let \(N = (A_p/I)^* \). Then \(N = \{ \Phi \in PM_p(G); \langle \Phi, I \rangle = 0 \} \) and \(N \) is a \(\wedge^\ast \) closed \(A_p \)-submodule of \(PM_p \), since \(I \) is an ideal. Since \(G \) is amenable, we can apply our Theorem 1.3 of [7] to get that \(N \) (hence \(A_p/I \)) is finite dimensional. In case \(I = I_E \), \(\{ \delta_x; x \in E \} \) is a linearly independent subset of \(N \); hence \(E \) is finite.

(b) Let \(E \) be an infinite Leinert subset of \(G \). Then \(N = (A_2/I_E)^* \) is isomorphic as a Banach space to \(l^2(E) \) (see (iii) of the above theorem). Thus \(N^* = A_2/I_E \) also satisfies this condition.

H. P. Rosenthal proves in part of Theorem 2.12 [18, p. 53]) that if \(G \) is nondiscrete and abelian, then any nonzero ideal of \(A_2(G) \) contains a subspace isomorphic to \(l^1 \). We improve this theorem in

Theorem 5. (a) Let \(G \) be any nondiscrete locally compact group. Then every closed nonzero ideal \(I \) of \(A_p(G) \) contains a closed subspace isomorphic to \(l^1 \).

(b) If \(G \) is discrete infinite, then \(A_2(G) \) contains a closed ideal \(I \) isomorphic to \(l^2 \), a fortiori none of its closed subspaces is isomorphic to \(l^1 \) (due to M. A. Picardello [21]).

Remark. If \(G \) is compact abelian, \(A(G) = l^1(Z) \); hence \(l^1 \) cannot be replaced by any other infinite-dimensional Banach space nonisomorphic to \(l^1 \).

Proof. (a) Let \(Z = \{ x; v(x) = 0 \text{ for each } v \in I \} \). Then \(Z \neq G \) and \(Z \) is closed. Let \(a \in G \sim Z \) and \(V \) be a neighborhood of \(e \) such that \(aV^2 \cap Z = \emptyset \). Let \(V_n = V_n^{-1} \) be neighborhoods of \(e \) such that \(V_1 \subset V, V_n^2 \subset V_{n-1} \) if \(n \geq 2, m(V_n) \to 0 \). Let \(\Psi_n = m(V_n)^{-1}1_{V_n} \). Then, as is easily seen, \(\Psi_n \in A_p \cap C_0, \Psi_n(e) = 1 \) and \(\|\Psi_n\|_{A_p} \leq m(V_n)^{-1} \|1_{V_n}\|_{l^1} \|1_{V_n}\|_{\ell^1} = 1 \) \((1/p + 1/p' = 1)\). Thus \(\|\Psi_n\|_{A_p} = 1 = \Psi_n(e) \) and \(\Psi_n(x) = 0 \) if \(x \) is off \(V_n^2 \).

Let \(u_n = l_{a^{-1}} \Psi_n \), where \(l_{a^{-1}}u(x) = u(ax) \) for any \(u \in A_p, a, x \in G \). Then, by definition of the \(A_p \) norm [8, p. 97], \(\|u_n\|_{A_p} = 1 = u_n(a) \) and \(u_n(x) = 0 \) if \(x \) is off \(aV_n^2 \). Thus, if \(n \geq 2, u_n \in C_0 \cap A_p \) and \(u_n = 0 \) off \(aV_n^2 \); in particular off \(aV_1 \) and \(aV_1 \cap Z = \emptyset \). Thus \(u_n \) is in the smallest ideal whose zero set is \(Z \) and, in particular, in \(I \). We claim that no subsequence of \(\{u_n\} \) is weak Cauchy. In fact, assume that \(u_n \) is a weak Cauchy subsequence. If \(E = aV \), then \(u_n \in A_p(E) \) (\(v \in A_p; supp v \subset E \)). But \(A_p(E) \) is weakly sequentially complete by Lemma 18 of [20]. Hence \(u_n \to u \sigma(A_p, PM_p) \) for some \(u \in A_p \). In particular, for each \(\mu \in M(G) \), \(\int u_n \mu \to \int u \mu \). By taking \(\mu = \delta_x \), we get \(u(a) = 1 \). And if \(x \notin aV_n^2 \), then \(u_n(x) = 0 \) if \(n \geq k \). Hence \(u(x) = 0 \) if \(x \notin \cap_n aV_n^2 \). Now \(m(V_n^2) \leq m(V_{n-1}) \to 0 \). Hence \(\cap_n aV_n^2 \) has void interior. But \(u \in A_p \subset C_0(G) \); hence \(\{ a \} \subset \{ x; |u(x)| > \frac{1}{2} \} \subset \cap_n aV_n^2 \). This is a contradiction. It follows that no subsequence of \(u_n \) is weak Cauchy. We now apply H. P. Rosenthal’s deep Theorem 1 of [19, p. 805] and get that some subsequence \(u_n \), of \(u_n \) is isomorphic to a canonical \(l^1 \) basis.
(b) We follow the notation of Picardello [21]. By Theorem 1 of [21] every infinite subset of G contains a subset E which is a $\Lambda(4)$ set. By Proposition 2 of [21] and the remark after it, E is also a $\Lambda(2)$ set. However, by Remark 4 (after Definition 5 of [21]), $L^1(\Gamma)$ is isometrically isomorphic to $A_2(G)$ [1^2]. It follows that the ideal $I = \{ u \in A_2(G) ; u = 0 \text{ off } E \}$ with $A_2(G)$-norm is isomorphic to I^2.

The following theorem is related to the main result of J. E. Gilbert [5] on existence of projections which commute with convolution, onto w^* closed $A(G)$ submodules of $PM_2(G)$.

Let $S \subset B_p^M(G)$ be a norm bounded semigroup (with respect to multiplication). For example, $S = \{ u^n ; n \geq 1 \}$, where $u \in B_p^M$ satisfies $\sup \| u^n \| < \infty$, is such a semigroup. Theorems 6.2 and 6.20 of Schreiber [15] clarify to some extent the spectrum of submodules F which can be expressed as in the next theorem.

Theorem 6. Let $S \subset B_p^M(G)$ be a norm bounded semigroup, and $F = \{ \phi \in PM_p ; u \cdot \phi = \phi \text{ for each } u \in S \}$. Then there exists a bounded linear onto projection $P : PM_p \to F$ such that $P(v \cdot \phi) = v \cdot P\phi$ for all $v \in A_p$.

Proof. For each $\Phi \in PM_p$ let $K_\Phi = w^* \text{cl}(CoS \cdot \phi)$, where $S \cdot \Phi = \{ u \cdot \Phi ; u \in S \}$ and Co denotes convex hull. Each K_Φ is a w^* compact convex set which satisfies $s \cdot K_\Phi \subset K_\Phi$ for each $s \in S$. Furthermore, each operator $\psi \to s \cdot \psi$ on PM_p is w^*-w^* continuous, and the semigroup of operators S on PM_p is commutative. Hence, by the Markov-Kakutani theorem, $K_\Phi \cap F \neq \emptyset$ for each Φ in PM_p. We note now that F is a w^* closed A_p-submodule of PM_p, and that the w^* operator closure of CoS in the space $L(PM_p)$ of operators from PM_p to PM_p (denote this set by Co^*S) is a semigroup which is a w^*-ot compact set; see A. T. Lau [11] just preceding Theorem 2.1. (Here w^*-ot denotes the w^* operator topology on $L(PM_p)$.)

We apply now Theorem 2.1 of A. T. Lau (and the remark after its proof) [11] with $X = PM_p$ and get that there exists an operator $P \in Co^*(S)$ which is F-stationary on $X = PM_p$, i.e., such that $P\Phi \in F$ for each Φ in PM_p. Note here that S need not consist of only isometric operators on PM_p (as stated in the introduction of [11]). Lau’s proof works for any norm bounded semigroup. Let $u_a \in CoS$ be such that $(u \cdot \Phi, v) \to \langle P\Phi, v \rangle$ for each $\Phi \in PM_p$ and $v \in A_p$. Let $Q : PM_p \to PM_p$ be w^*-w^* continuous and commute with each $u \in S$, i.e., $Q(u \cdot \phi) = u \cdot Q\phi$ for each $\phi \in PM_p$. Then this holds also for each $u \in CoS$. But then $(u \cdot Q\phi, v) = \langle Q(u_a \cdot \phi), v \rangle \to \langle Q(\Phi), v \rangle$, and the left side converges to $(Q(P\Phi), v)$ for all $v \in A_p$. Hence, P commutes with every w^* continuous operator $Q : PM_p \to PM_p$ which commutes with each operator $\phi \to s \cdot \phi$ for each $s \in S$. For any $v \in A_p$ the operator $Q_s(\phi) = v \cdot \phi$ is such an operator. It follows that $P(v \cdot \phi) = v \cdot P\Phi$ for all $v \in A_p$ and all $\Phi \in PM_p$. If now $\Phi \in F$, then $u \cdot \Phi = \Phi$ for each $u \in CoS$. Thus $P\Phi = \Phi$ since $P \in Co^*(S)$. But $P(PM_p) \subset F$, since P is F-stationary. It follows that P is the required projection onto F.

Remark. (a) Let P denote the set of all F-stationary operators $P \in Co^*(S)$ on PM_p. Then Lau’s Theorem 2.1 [11] implies that $\{ (Co^*S)(\phi) \} \cap F = \{ P\phi ; P \in P \}$ for each $\phi \in PM_p$.

(b) The main idea in the above proof is due to Anthony Lau and is also used in Theorem 2 of [17].
REFERENCES

17. A. Lau and V. Losert, W^*-closed complemented invariant subspaces of $L^p(G)$ and amenable locally compact groups (submitted).

Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1W5, Canada