Weighted norm inequalities for certain integral operators. II
HTML articles powered by AMS MathViewer
- by H. P. Heinig
- Proc. Amer. Math. Soc. 95 (1985), 387-395
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806076-3
- PDF | Request permission
Abstract:
Conditions on nonnegative weight functions $u(x)$ and $\upsilon (x)$ are given which ensure that an inequality of the form ${(\smallint {\left | {Tf(x)} \right |^q}u(x)\;dx)^{1/q}} \leqslant C{(\smallint {\left | {f(x)} \right |^p}\upsilon (x)\;dx)^{1/p}}$ holds for $1 \leqslant q < p < \infty$, where $T$ is an integral operator of the form $\int _{ - \infty }^x {K(x,y)f(y)dy}$ or $\int _x^\infty {K(y,x)f(y)\;dy}$ and $C$ a constant independent of $f$. Specifically a number of inequalities for well-known classical operators are obtained. Inequalities of the above form for $1 \leqslant p \leqslant q < \infty$ were obtained in [1].References
- K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14 (1983), no. 4, 834–844. MR 704496, DOI 10.1137/0514064
- L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31 (1970), 279–285. MR 277676
- S. B. Stečkin and V. I. Levin, Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29. MR 0112925
- Wladimir Mazja, Einbettungssätze für Sobolewsche Räume. Teil 1, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979 (German). Translated from the Russian by Jürgen Nagel; With English, French and Russian summaries; Teubner-Texte zur Mathematik. [Teubner Texts on Mathematics]. MR 571891
- Eric Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), no. 1, 329–337. MR 719673, DOI 10.1090/S0002-9947-1984-0719673-4
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 387-395
- MSC: Primary 26D10; Secondary 42A50, 44A10, 47G05
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806076-3
- MathSciNet review: 806076