Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A small boundary for $H^ \infty$ on a strictly pseudoconvex domain


Author: Antonella Cupillari
Journal: Proc. Amer. Math. Soc. 95 (1985), 396-402
MSC: Primary 32E25; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9939-1985-0806077-5
MathSciNet review: 806077
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $n \geqslant 2$ and $D \subset \subset {{\mathbf {C}}^n}$ be a strictly pseudoconvex domain with ${C^k}$ boundary for $k > 2$. There is a closed nowhere dense subset of the maximal ideal space of ${L^\infty }({\text {b}}D)$ which defines a closed boundary for ${H^\infty }(D)$.


References [Enhancements On Off] (What's this?)

    Aleksandrov, private communication with Rudin.
  • Errett Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. MR 200476
  • A. Cupillari, Inner functions and boundaries for ${H^\infty }$ on strictly pseudoconvex domains, Ph.D. Thesis, State Univ. of New York at Albany, 1984.
  • T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73–81. MR 276742
  • Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR 0410387
  • Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • E. Løw, Inner functions and boundary values in ${H^\infty }(\Omega )$ and $A(\Omega )$ in smoothly bounded pseudoconvex domains, Ph.D. Thesis, Princeton Univ., June 1983.
  • R. Michael Range, A small boundary for $H^{\infty }$ on the polydisc, Proc. Amer. Math. Soc. 32 (1972), 253–255. MR 290115, DOI https://doi.org/10.1090/S0002-9939-1972-0290115-6
  • ---, Localization principle in several variables. Bounded holomorphic functions on strictly pseudoconvex domains, Ph.D. Thesis, Univ. of California, Los Angeles, 1971.
  • E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Mathematical Notes, No. 11. MR 0473215

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32E25, 46J15

Retrieve articles in all journals with MSC: 32E25, 46J15


Additional Information

Article copyright: © Copyright 1985 American Mathematical Society