A note on minimal covers for sofic systems
HTML articles powered by AMS MathViewer
- by Mike Boyle, Bruce Kitchens and Brian Marcus
- Proc. Amer. Math. Soc. 95 (1985), 403-411
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806078-7
- PDF | Request permission
Abstract:
We characterize the sofic systems which have minimal subshift-of-finite-type covers and derive some consequences.References
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI 10.1090/memo/0219
- I. Csiszár and J. Komlós, On the equivalence of two models of finite-state noiseless channels from the point of view of the output, Proc. Colloquium on Information Theory (Debrecen, 1967) János Bolyai Math. Soc., Budapest, 1968, pp. 129–133. MR 0252108
- Ethan M. Coven and Michael E. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory 8 (1974/75), no. 2, 167–175. MR 383378, DOI 10.1007/BF01762187
- Ethan M. Coven and Michael E. Paul, Sofic systems, Israel J. Math. 20 (1975), no. 2, 165–177. MR 383379, DOI 10.1007/BF02757884
- R. Fischer, Graphs and symbolic dynamics, Topics in information theory (Second Colloq., Keszthely, 1975) Colloq. Math. Soc. János Bolyai, Vol. 16, North-Holland, Amsterdam, 1977, pp. 229–244. MR 0466486
- Roland Fischer, Sofic systems and graphs, Monatsh. Math. 80 (1975), no. 3, 179–186. MR 407235, DOI 10.1007/BF01319913
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062 B. Kitchens, Ph.D. Thesis, University of North Carolina, Chapel Hill, N.C., 1981.
- Wolfgang Krieger, On sofic systems. I, Israel J. Math. 48 (1984), no. 4, 305–330. MR 776312, DOI 10.1007/BF02760631
- Brian Marcus, Sofic systems and encoding data, IEEE Trans. Inform. Theory 31 (1985), no. 3, 366–377. MR 794434, DOI 10.1109/TIT.1985.1057037
- Masakazu Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 387–413. MR 741394, DOI 10.1017/S0143385700002042
- Masakazu Nasu, An invariant for bounded-to-one factor maps between transitive sofic subshifts, Ergodic Theory Dynam. Systems 5 (1985), no. 1, 89–105. MR 782790, DOI 10.1017/S0143385700002777
- Benjamin Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462–474. MR 340556, DOI 10.1007/BF01295322
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 95 (1985), 403-411
- MSC: Primary 54H20; Secondary 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806078-7
- MathSciNet review: 806078