## Embedded minimal surfaces in $3$-manifolds with positive scalar curvature

HTML articles powered by AMS MathViewer

- by J. H. Rubinstein PDF
- Proc. Amer. Math. Soc.
**95**(1985), 458-462 Request permission

## Abstract:

Let $M$ be a closed orientable Riemannian $3$-manifold with positive scalar curvature. We prove that any embedded closed minimal surface in $M$ has a topological description as a generalized Heegaard surface. Also an existence theorem is proved which gives examples of such minimal surfaces.## References

- Joan S. Birman,
*On the equivalence of Heegaard splittings of closed, orientable $3$-manifolds*, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 137–164. MR**0375318** - Glen E. Bredon and John W. Wood,
*Non-orientable surfaces in orientable $3$-manifolds*, Invent. Math.**7**(1969), 83–110. MR**246312**, DOI 10.1007/BF01389793 - Francis Bonahon and Jean-Pierre Otal,
*Scindements de Heegaard des espaces lenticulaires*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 3, 451–466 (1984) (French). MR**740078** - Renate Engmann,
*Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht $2$ der zusammenhängenden Summe zweier Linsenräume*, Abh. Math. Sem. Univ. Hamburg**35**(1970), 33–38 (German). MR**283803**, DOI 10.1007/BF02992472 - Mikhael Gromov and H. Blaine Lawson Jr.,
*The classification of simply connected manifolds of positive scalar curvature*, Ann. of Math. (2)**111**(1980), no. 3, 423–434. MR**577131**, DOI 10.2307/1971103
M. Gromov and H. B. Lawson, Jr., - Wolfgang Haken,
*Some results on surfaces in $3$-manifolds*, Studies in Modern Topology, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1968, pp. 39–98. MR**0224071** - Richard S. Hamilton,
*Three-manifolds with positive Ricci curvature*, J. Differential Geometry**17**(1982), no. 2, 255–306. MR**664497**
H. Kneser, - H. Blaine Lawson Jr.,
*Complete minimal surfaces in $S^{3}$*, Ann. of Math. (2)**92**(1970), 335–374. MR**270280**, DOI 10.2307/1970625 - H. Blaine Lawson Jr.,
*The unknottedness of minimal embeddings*, Invent. Math.**11**(1970), 183–187. MR**287447**, DOI 10.1007/BF01404649 - William Meeks III, Leon Simon, and Shing Tung Yau,
*Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature*, Ann. of Math. (2)**116**(1982), no. 3, 621–659. MR**678484**, DOI 10.2307/2007026
J. Milnor, - J. H. Rubinstein,
*One-sided Heegaard splittings of $3$-manifolds*, Pacific J. Math.**76**(1978), no. 1, 185–200. MR**488064**
J. H. Rubinstein and L. Simon, - R. Schoen and S. T. Yau,
*On the structure of manifolds with positive scalar curvature*, Manuscripta Math.**28**(1979), no. 1-3, 159–183. MR**535700**, DOI 10.1007/BF01647970 - R. Schoen and Shing Tung Yau,
*Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature*, Ann. of Math. (2)**110**(1979), no. 1, 127–142. MR**541332**, DOI 10.2307/1971247 - Richard Schoen and Shing Tung Yau,
*Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 209–228. MR**645740** - Friedhelm Waldhausen,
*Heegaard-Zerlegungen der $3$-Sphäre*, Topology**7**(1968), 195–203 (German). MR**227992**, DOI 10.1016/0040-9383(68)90027-X

*Positive scalar curvature and the Dirac operator on complete Riemannian manifolds*, preprint.

*Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten*, Jahresber. Deutsch. Math.-Verein.

**38**(1929), 248-260.

*A unique factorization theorem for*$3$

*-manifolds*, Amer. J. Math.

**84**(1962), 1-7.

*Minimal surfaces invariant under groups of isometries in*$3$

*-manifolds*(in preparation).

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**95**(1985), 458-462 - MSC: Primary 53C42; Secondary 53A10, 57N10
- DOI: https://doi.org/10.1090/S0002-9939-1985-0806087-8
- MathSciNet review: 806087