ON A CONJECTURE OF BALOG

ADOLF HILDEBRAND

Abstract. A conjecture of A. Balog is proved which gives a sufficient condition on a set \(A \) of positive integers such that \(A \cap (A + 1) \) is infinite. A consequence of this result is that, for every \(\varepsilon > 0 \), there are infinitely many integers \(n \) such that both \(n \) and \(n + 1 \) have a prime factor \(> n^{1-\varepsilon} \).

1. Introduction. Some of the most difficult and seemingly unattackable problems in number theory deal with simultaneous properties of integers \(n \) and their translates \(n + t \), where \(t \in \mathbb{N} \) is fixed. The twin prime conjecture, for example, asserts that \(n \) and \(n + 2 \) are prime infinitely often.

Another problem of this type, posed by Erdös several times (see e.g. [3]), is to show that, for every fixed \(\varepsilon > 0 \), there are infinitely many integers \(n \) such that both \(n \) and \(n + 1 \) have a prime factor \(> n^{1-\varepsilon} \). In other words, putting
\[Q_\alpha = \{ n \in \mathbb{N} : P(n) > n^\alpha \}, \]
where \(P(n) \) denotes the largest prime factor of \(n \), the conjecture asserts that \(Q_\alpha \cap (Q_\alpha + 1) \) is infinite for every \(\alpha < 1 \).

At the Oberwolfach meeting on analytic number theory in 1982, A. Balog proposed a general conjecture, which gives a sufficient condition on a set \(A \subseteq \mathbb{N} \), such that \(A \cap (A + 1) \) contains infinitely many elements. To this end, he introduced the concept of “\(k \)-stability”. A set \(A \subseteq \mathbb{N} \) is called \(k \)-stable if
\[kA \subseteq A, \quad k^{-1}(A \cap k\mathbb{N}) \subseteq A, \]
where \(\lambda A \) denotes the set \(\{ \lambda a : a \in A \} \), and \(A \subseteq B \) means that \(A \) is contained in \(B \) up to a set of density zero, i.e., \(d(A \setminus B) = 0 \). Here and in the sequel, \(d(\cdot) \) denotes the asymptotic density, defined by
\[d(A) = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x, n \in A} 1 \]
(provided this limit exists), and the lower and upper densities \(d(\cdot) \) and \(\bar{d}(\cdot) \) are defined analogously by taking the limit inferior and the limit superior, respectively.

Balog [1] showed by an elementary argument that \(A \cap (A + 1) \) is infinite whenever \(A \) is \(2 \)-stable and \(d(A) > 1/3 \), and he made the following

Conjecture (Balog [1]). If \(A \subseteq \mathbb{N} \) is \(p \)-stable for every prime \(p \) and has positive density, then \(A \cap (A + 1) \) is infinite.

Received by the editors December 14, 1984 and, in revised form, February 4, 1985.
1980 Mathematics Subject Classification. Primary 10A50, 10L99; Secondary 10H15.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The sets $Q_{\alpha}, \alpha < 1$, introduced above, have positive density (see e.g. [2]), and it is easy to see that they are k-stable for every $k \in \mathbb{N}$. Thus Balog's conjecture implies the above-mentioned conjecture that $P(n) > n^{1-\epsilon}$ and $P(n + 1) > (n + 1)^{1-\epsilon}$ holds infinitely often for every fixed $\epsilon > 0$.

The purpose of this paper is to prove Balog's conjecture in a more general form.

2. Results. Given a set $A \subset \mathbb{N}$, we define, for $N \in \mathbb{N}$,

$$A_N = \bigcup_{n, d=1}^{N} \frac{n}{d} (A \cap d\mathbb{N}).$$

These sets form an ascending chain starting with $A_1 = A$.

Theorem. If $d(A) > 0$, then $d(A_N \cap (A_N + 1)) > 0$ for all sufficiently large N.

More precisely, for every $\epsilon > 0$ there exist $N(\epsilon) \in \mathbb{N}$ and $\delta(\epsilon) > 0$ such that $d(A) \geq \epsilon$ implies

$$d(A_N \cap (A_N + 1)) \geq \delta(\epsilon) \quad (N \geq N(\epsilon)).$$

If A is p-stable for every prime $p \leq N$, then A is k-stable for all $k \leq N$, so that

$$A_N = \bigcup_{n, d=1}^{N} \frac{n}{d} (A \cap d\mathbb{N}) \subset A \subset A_N,$$

and, therefore, $d(A_N \cap (A_N + 1)) = d(A \cap (A + 1))$. Thus the theorem implies Balog's conjecture in the following form.

Corollary 1. If $A \subset \mathbb{N}$ satisfies $d(A) \geq \epsilon$ and is p-stable for every prime $p \leq N(\epsilon)$, then $d(A \cap (A + 1)) \geq \delta(\epsilon)$ holds, where $N(\epsilon)$ and $\delta(\epsilon)$ are as in the Theorem.

Applying this result to the sets $Q_{\alpha} \setminus Q_{\beta}, 0 \leq \alpha < \beta \leq 1$, we obtain the conjecture mentioned in the introduction in the following slightly more general form.

Corollary 2. Let $0 \leq \alpha < \beta \leq 1$. Then the set of integers n for which $n^\alpha < P(n) \leq n^\beta, (n + 1)^\alpha < P(n + 1) \leq (n + 1)^\beta$ holds has positive lower density.

3. Lemmas.

Lemma 1. For every $k \geq 2$ there exist positive integers $n_1 < \cdots < n_k$ satisfying

$$n_j - n_i = (n_i, n_j) \quad (1 \leq i < j \leq k).$$

Proof. We define an auxiliary sequence $(N_k)_{k \geq 1}$ recursively by

$$N_1 = 1, \quad N_{k+1} = 2 \prod_{i=1}^{k} \left(\sum_{j=i}^{k} N_j \right) \quad (k \geq 1).$$

By construction,

$$\sum_{h=i}^{j-1} N_k |N_j| N_{j+1} \cdots |N_k| \quad (1 \leq i < j \leq k).$$

1Heath-Brown [4] proved a stronger form of the lemma, where the n_i were required to satisfy an additional condition besides (1). Since this additional condition is of no relevance here and complicates the proof considerably, we preferred to give a short proof of the lemma in the form stated.
Thus, if for given \(k \geq 2 \) we put
\[
n_k = N_k, \quad n_i = N_k - \sum_{j=i}^{k-1} N_j \quad (1 \leq i \leq k - 1),
\]
we have \(n_k > \cdots > n_1 \geq N_k/2 \geq 1 \), and
\[
n_j - n_i = \sum_{h=i}^{j-1} N_h \quad (1 \leq j < i \leq k),
\]
which is equivalent to (1).

Lemma 2. Let \(r \) be a positive integer, and for \(D \geq 1 \) let \(\mathcal{D} = \mathcal{D}(D, r) \) be the set of positive integers \(d \leq D \) of the form
\[
d = d_1 p, \quad (p, r) = 1, \quad q \mid d_1 \Rightarrow q \mid r,
\]
where \(p \) and \(q \) denote primes. Then we have
\[
\frac{1}{r} \sum_{d \in \mathcal{D}} \frac{1}{d} = \frac{\log \log(D + 2)}{\varphi(r)} + O(1)
\]
and
\[
d \left(\mathbb{N} \setminus \bigcup_{d \in \mathcal{D}} d(r \mathbb{N} - 1) \right) \ll \frac{\varphi(r)}{\log \log(D + 2)},
\]
where \(\varphi \) is the Euler function and the implied constants are absolute.

Proof. Letting \(d_1 \) be an integer all of whose prime factors divide \(r \), we have
\[
\frac{1}{d} = \frac{1}{d_1 \sum_{p \leq D} \frac{1}{p}} \leq \frac{1}{d_1} \sum_{p \leq D} \frac{1}{p} \leq \prod_{p \leq r} \left(1 - \frac{1}{p} \right)^{-1} \sum_{p \leq D} \frac{1}{p} = \frac{r}{\varphi(r)} \left(\log \log(D + 2) + O(1) \right)
\]
and
\[
\frac{1}{d} \geq \frac{1}{d_1} \sum_{p \leq D} \frac{1}{p} \geq \left(\frac{r}{\varphi(r)} - \sum_{d_1 > \sqrt{D}} \frac{1}{d_1} \right) \log \log(D + 2) + O(r).
\]
This yields (3), since
\[
\sum_{d_1 > \sqrt{D}} \frac{1}{d_1} \ll D^{-1/4} \sum_{d_1 \ll \sqrt{D}} d_1^{-1/2} = D^{-1/4} \prod_{p \mid r} (1 - p^{-1/2})^{-1}
\]
\[
\ll D^{-1/4} \exp \left(2 \sum_{p \mid r} p^{-1/2} \right) \ll rD^{-1/4}.
\]
For the proof of (4) we may suppose
\[
\log \log D \geq C \varphi(r),
\]
where \(C \) is an arbitrary, but fixed, positive constant. Set \(S = \bigcup_{d \in \mathcal{D}} d(r\mathbb{N} - 1) \) and define

\[
f(n) = \sum_{d|n, d \in \mathcal{D}, n/d = -1 \mod r} 1.
\]

Thus \(f(n) \geq 0 \) for all \(n \in \mathbb{N} \), and \(f(n) > 0 \) if and only if \(n \in S \). We use a variance argument to obtain the desired upper bound for \(d(\mathbb{N} \setminus S) \).

Putting

\[
M = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n) = \sum_{d \in \mathcal{D}} \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x/d, n/d = -1 \mod r} 1 = \frac{1}{r} \sum_{d \in \mathcal{D}} \frac{1}{d},
\]

we have

\[
d(\mathbb{N} \setminus S) = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x, f(n)=0} 1 \leq \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x, f(n) \geq M/2} 1 \leq \frac{4}{M^2} \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} (f(n) - M)^2 = \frac{4}{M^2} \left(\lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n)^2 - M^2 \right)
\]

\[
= \frac{4}{M^2} \left(M_2 - M^2 \right), \quad \text{say}.
\]

In view of (3), (6), and (5) (with a sufficiently large constant \(C \)), the asserted upper bound (4) follows if we can show

\[
M_2 = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n)^2 \leq \left(\log \log D \right)^2 \left(\frac{1}{\varphi(r)} \right) + O(\log \log D \varphi(r))
\]

with an absolute \(O \)-constant.

Expanding \(f(n)^2 \), we get

\[
M_2 = \sum_{d, d' \in \mathcal{D}} \frac{1}{[d, d']} \lim_{x \to \infty} \frac{[d, d']}{x} \sum_{n \leq x/[d, d']} 1,
\]

where (*) denotes the condition

\[
\frac{nd}{(d, d')} \equiv \frac{nd'}{(d, d')} \equiv -1 \mod r.
\]

Let \(d = d_1 p \) and \(d' = d'_1 p' \) be the (unique) decompositions of the form (2) for \(d \) and \(d' \). Then (*) has a solution in \(n \) if and only if \(d_1 = d'_1, p \equiv p' \mod r \), and in this case the limit in the last expression equals \(1/r \). Thus we get

\[
M_2 \leq \frac{1}{r} \sum_{d_1 \leq D} \frac{1}{d_1} \sum_{p, p' \leq D, p \equiv p' \mod r} \left(\frac{1}{p, p'} \right)
\]

\[
\leq \frac{1}{\varphi(r)} \sum_{p \leq D} \frac{1}{p} \sum_{p' \leq D, p' \equiv p \mod r} \left(\frac{1}{p'} + O(1) \right).
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
ON A CONJECTURE OF BALOG

The innermost sum equals

\[\sum_{p' \leq p < D \atop p' \equiv p \mod r} \frac{1}{p'} + O \left(\sum_{\nu \leq \nu' \atop \nu \equiv \nu' \mod r} \frac{1}{\nu} \right) \]

\[= \int_{\nu'}^{D} \pi(x, r, p) \frac{dx}{x^2} + O(1) = \frac{\log \log D}{\varphi(r)} + O(1), \]

where the last step follows from the Siegel-Walfisz theorem. We therefore obtain

\[M_2 \leq \frac{1}{\varphi(r)} \left(\sum_{p \leq D} \frac{1}{p} \left(\frac{\log \log D}{\varphi(r)} + O(1) \right) \right) \]

\[\leq \left(\frac{\log \log D}{\varphi(r)} \right)^2 + O \left(\frac{\log \log D}{\varphi(r)} \right), \]

i.e., estimate (7). This completes the proof of Lemma 2.

4. Proof of the Theorem. For \(x > 0 \) let \(d_x(\cdot) \) be defined by

\[d_x(M) = \frac{1}{x} \sum_{\nu \in [x]} 1 \quad (M \subseteq \mathbb{N}), \]

so that

\[d(M) = \liminf_{x \to \infty} d_x(M), \quad d(M) = \limsup_{x \to \infty} d_x(M). \]

If \(\lambda \geq 1 \), then obviously

\[d_x(\lambda M) = (1/\lambda) d_x(\lambda M) \leq d_x(M), \]

and for every fixed \(t \in \mathbb{N} \) we have

\[d_x(M + t) = d_x(M) + o(1) \quad \text{as} \quad x \to \infty. \]

Given a set \(A \subseteq \mathbb{N} \) and positive integers \(n_1 < \cdots < n_k \) satisfying (1), we define the sets

\[B_{i, d} = n_i (A + d) \cap d\mathbb{N} \quad (1 \leq i \leq k, d \in \mathbb{N}), \]

where \(n = \prod_{i=1}^k n_i^2 \). By the inclusion-exclusion principle we have, for \(x > 0 \) and every \(d \in \mathbb{N} \),

\[\left(\sum_{i=1}^k d_x(B_{i, d}) \geq \sum_{i=1}^k d_x(B_{i, d}) - \sum_{1 \leq i < j \leq k} d_x(B_{i, d} \cap B_{j, d}). \right. \]

We shall estimate from above the second term on the right in terms of

\[d_x(A_N \cap (A_N + 1)), \]

where \(N \geq \max(d, n) \), and bound the first term, averaged over a suitable range for \(d \), from below in terms of \(d_{x/n_k}(A) \). This will lead to the desired relation between the densities of \(A \) and \(A_N \cap (A_N + 1) \).

Using the stated properties of the function \(d_x \), we obtain

\[d_x(B_{i, d}) = d_x \left(n_i (A + d) \cap d\mathbb{N} \right) = \frac{1}{n_i} d_{x/n_i} \left((A + d) \cap d\mathbb{N} \right) \]

\[\geq \frac{1}{n_k} d_{x/n_k} (A \cap d\mathbb{N}) + o(1), \]
where \(T_i = (n/n_i)N - 1 \). Moreover, for \(1 \leq i < j \leq k \), we get
\[
d_x(B_{i,d} \cap B_{j,d}) \leq d_x(n_i(A + d) \cap n_j(A + d) \cap d_n n_i N)
\]
\[
\leq d_x \left(\frac{n_i}{n_i} \frac{A \cap d N}{d} \cap \left(\frac{n_j}{n_j} \frac{A \cap d N}{d} + \frac{n_j - n_i}{n_i, n_j} \right) \right) + o(1)
\]
\[
\leq d_x(A_N \cap (A_N + 1)) + o(1),
\]
provided \(N \geq \max(n, d) \), where the last step follows from (1) and the definition of \(A_N \). Substituting these estimates together with the trivial bound
\[
d_x \left(\bigcup_{i=1}^k B_{i,d} \right) \leq d_x(d n \mathcal{N}) \leq \frac{1}{d n}
\]
into (8) yields
\[
\frac{1}{d n} \geq \frac{1}{n_k} \sum_{i=1}^k d_{x/n_k}(A \cap d T_i) - k^2 d_x(A_N \cap (A_N + 1)) + o(1)
\]
for every fixed \(d \in \mathbb{N} \) and \(N \geq \max(n, d) \).

We now fix \(\delta \geq 1 \) and let \(\mathcal{D} = \mathcal{D}(D, n/n_i) \) be defined as in Lemma 2, with \(r = n/n_i \). Since \(\mathcal{D}(D, r) \) depends only on the set of prime factors of \(r \), and the numbers \(n/n_i = \prod_{j=1}^k n_i^j / n_i, 1 \leq i \leq k \), have the same set of prime factors, this definition does not depend on the choice of the index \(i \). Summing the last inequality over \(d \in \mathcal{D} \), we obtain, for \(N \geq \max(n, D) \),
\[
\frac{1}{n} \sum_{d \in \mathcal{D}} \frac{1}{d} \geq \frac{1}{n_k} \sum_{i=1}^k \sum_{d \in \mathcal{D}} d_{x/n_k}(A \cap d T_i) - D k^2 d_x(A_N \cap (A_N + 1)) + o(1)
\]
\[
\geq \frac{1}{n_k} \sum_{i=1}^k d_{x/n_k}(A \cap S_i) - D k^2 d_x(A_N \cap (A_N + 1)) + o(1),
\]
where
\[
S_i = \bigcup_{d \in \mathcal{D}} d T_i = \bigcup_{d \in \mathcal{D}} \left(\frac{n}{n_i} N - 1 \right).
\]

Letting \(x \to \infty \), we deduce
\[
D k^2 d(A_N \cap (A_N + 1)) \geq \frac{1}{n_k} \sum_{i=1}^k d(A \cap S_i) - \frac{1}{n} \sum_{d \in \mathcal{D}} \frac{1}{d}
\]
\[
\geq \frac{k}{n_k} d(A) - \frac{1}{n_k} \sum_{i=1}^k d(N \setminus S_i) - \frac{1}{n} \sum_{d \in \mathcal{D}} \frac{1}{d}.
\]

By Lemma 2 we have
\[
\frac{n_k}{n} \sum_{d \in \mathcal{D}} \frac{1}{d} \ll \frac{\log \log(D + 2)}{\varphi(n/n_k)} + 1
\]
and
\[
d(N \setminus S_i) \ll \frac{\varphi(n/n_i)}{\log \log(D + 2)}.
\]
Since
\[\frac{\varphi(n/n_{i})}{n/n_{i}} = \prod_{p | n/n_{i}} \left(1 - \frac{1}{p}\right) = \prod_{p | n_{1}, \ldots, n_{k}} \left(1 - \frac{1}{p}\right) \]
is independent of the choice of \(i \), and since, in view of (1),
\[n_{1} \leq n_{i} \leq n_{k} \leq 2n_{1}, \]
the last estimate remains valid with \(\varphi(n/n_{k}) \) in place of \(\varphi(n/n_{i}) \). Thus, defining \(D = D(k) \) by
\[\frac{\log \log(D + 2)}{\varphi(n/n_{k})} = \sqrt{k}, \]
we obtain, from (9),
\[Dk^{2}d(A_{N} \cap (A_{N} + 1)) \geq \frac{k}{n_{k}} \left(d(A) + O\left(\frac{1}{\sqrt{k}}\right) \right) \]
with an absolute \(O \)-constant. If now \(d(A) \geq \varepsilon (> 0) \), then by choosing \(k = k(\varepsilon) \) sufficiently large (which is possible by Lemma 1), the \(O \)-term becomes \(\leq \varepsilon/2 \), and we get
\[d(A_{N} \cap (A_{N} + 1)) \geq \delta(\varepsilon) \quad (N \geq N(\varepsilon)), \]
with
\[\delta(\varepsilon) = \frac{\varepsilon}{2D(k)kn_{k}}, \quad N(\varepsilon) = \max(n, D(k)), \]
as asserted in the Theorem.

By a minor modification of the proof, one can show that the theorem remains valid, when \(d \) is replaced by the upper density \(\bar{d} \).

Acknowledgement. This work was done while the author was visiting the University of Illinois at Urbana-Champaign. I would like to thank the Department of Mathematics at Urbana for its hospitality and the Deutsche Forschungsgemeinschaft for financial support. Also, I am grateful to A. Balog for calling my attention to reference [4].

References

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540