CORRIGENDUM TO “EMBEDDINGS IN $G(1, 3)$”

A. PAPANTONOPoulos

As was pointed out by N. Goldstein in MR 84i, Lemma 2.2 in [3] is incorrect. We give here a revised version of the main theorem in [3]. In the proof we avoid Lemma 2.2 and use instead [2, Theorem 2.3 and Corollary 2.4], [1, Corollary IV.18], and Castelnuovo’s bound on the genus of a curve in \mathbb{P}^n. In the revised theorem the restriction to surfaces that are not projections from a higher \mathbb{P}^n is removed.

Theorem. Let Y be a nonsingular surface in $G \subset \mathbb{P}^5$ of degree $d \leq 8$, and let (a, b) be its class in the Chow ring $A(G)$ of G. Then one of the following holds:

(i) $d = 1$, $(a, b) = (1, 0)$, $Y = \mathbb{P}^2$;
(ii) $d = 2$, $(a, b) = (1, 1)$, $Y = F_0$;
(iii) $d = 3$, $(a, b) = (2, 1)$, $Y = F_1$;
(iv) $d = 4$, and either $(a, b) = (2, 2)$ and $Y = F_0$, F_2, or the del Pezzo S_4, or else $(a, b) = (1, 3)$ and $Y = \text{the Veronese surface}$;
(v) $d = 5$, $(a, b) = (2, 3)$ and $Y = F_6$ with 3 or 7 points blown up;
(vi) $d = 6$, $(a, b) = (3, 3)$, and either $Y = F_6$ with 2 or 6 points blown up, or Y is a geometrically ruled surface with $p_a = -1$, or $Y = G \cap \mathbb{P}^4 \cap S_3$ and is a K3 surface;
(vii) $d = 7$, and either Y is geometrically ruled with $p_a = -3$, or Y is ruled with 2 points blown up with $p_a = -3$, or Y is ruled with 4 or 6 points blown up with $p_a = -1$, or $Y = F_6$ with 8 points blown up, or Y is the cubic surface with 5 points blown up, or $K^2 = -12 + 6p_a$;
(viii) $d = 8$, and either $(a, b) = (4, 4)$, and $Y = F_6$ with 6 or 10 points blown up, or Y is geometrically ruled with $p_a = -3$, or Y is ruled with 4 points blown up with $p_a = -1$, or Y is a complete intersection of three quadrics, or $Y = G \cap \mathbb{P}^4 \cap S_4$ is a surface of general type; or $(a, b) = (2, 6)$ and Y is geometrically ruled with $p_a = -1$; or $(a, b) = (3, 5)$ and Y is ruled with 3 points blown up with $p_a = -1$.

To facilitate the reading of the proof, we list here some facts we use.

I. **CASTELNUOVO’S BOUND ON THE GENUS.** Let C be a nonsingular curve of degree d, $C \subset \mathbb{P}^n$, not lying in any \mathbb{P}^{n-1}. Then $g \leq m(m - 1)(n - 1)/2 + me$ where $m = \lfloor d - 1/n - 1 \rfloor$ and $e = (d - 1) - m(n - 1)$.

II. **CRITERION FOR A SURFACE TO BE RULED** [1, Corollary VI.18]. S is ruled if and only if there is a curve $C \subset S$, not an exceptional divisor, such that $C \cdot K < 0$.

Received by the editors January 8, 1985 and, in revised form, February 19, 1985.

1980 Mathematics Subject Classification. Primary 14M15; Secondary 14J99, 14E25.

©1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

533
III. CURVES ON NONRATIONAL RULED SURFACES. (1) [2, Theorem 2.3]: Let \(\pi: Y \to T \) be a nonrational ruled surface, \(C \subset Y \) an irreducible curve, and \(m \) the degree of \(\pi: C \to T \), with \(m > 1 \). Then

\[
C^2 \leq \frac{2m}{m-1}(g(C) - 1).
\]

(2) [2, Corollary 2.4]: Let \(C \) and \(Y \) be as above. Then either

(a) \(C \equiv T \) and the embedding of \(C \subset Y \) is equivalent to a section of the geometrically ruled surface \(\pi: \mathbb{P}(E) \to T \) and \((C^2)_Y = (T^2)(\pi(E)) \), or

(b) \(C^2 \leq 4g(C) - 4 \).

IV. FURTHER EQUATIONS. With the notation as in [3, p. 584], let \(s \) be the number of points in \(X \) with \(r_p = 1 \), \(t \) the number of points in \(X \) with \(r_p = 2 \) and \(\varphi^{-1}(p) = E \), one exceptional divisor, and \(u \) the number of points in \(X \) with \(r_p = 2 \) and \(\varphi^{-1}(p) = E_1 \cup E_2 \), two exceptional divisors. Assume that for all \(p \in X \), \(r_p \leq 2 \).

Then

(3) \(X^2 = m(2n - m) = C^2 + s + At + 5u \),

(4) \(2g(X) - 2 = X^2 - X^2/m - 2m(p_a(Y_0) + 1) \),

(5) \(g(X) = g(C) + t + u \),

(6) \(K^2_{Y_0} = K^2_Y + r \),

(7) \(r = s + t + 2u \).

PROOF OF THEOREM. (i) and (ii) are obvious.

(iii) If \(d = 3 \), then \(Y \subset \mathbb{P}^4 \); by I, \(g(C) = 0 \), \(HK = -5 \); II implies that \(Y \) is ruled, and III implies \(p_a = 0 \), and the proof in [3] for \(d = 3 \) applies.

(iv) If \(d = 4 \) and \(Y \subset \mathbb{P}^4 \), then, by I, \(g(C) = 0 \), \(HK = -6 \); II implies that \(Y \) is ruled, and III implies that \(p_a = 0 \), and the proof in [3] for \(d = 4 \) applies.

(v) If \(d = 5 \) and \(Y \subset \mathbb{P}^4 \), then, by I, \(g(C) \leq 1 \). Suppose \(g(C) = 0 \). Then \(KH = -7 \) and \(Y \) is a rational surface by II and III, but [3, (2)] leads to a contradiction. Therefore \(g(C) = 1 \), \(KH = -5 \), and II implies that \(Y \) is ruled. If \(p_a \neq 0 \), then by III(2), \(p_a = -1 \), \(C \) is a section, \(X^2 = C^2 \), and \(Y \) is geometrically ruled. Hence, \(K^2 = 0 \), and this contradicts [3, (2)]. Therefore \(p_a = 0 \), and the proof in [3] for \(d = 5 \) \(Y \subset \mathbb{P}^4 \) applies.

If \(d = 5 \) and \(Y \subset \mathbb{P}^4 \), \(g(C) = 0 \) or 2 by [3, Proposition 1.2]. Suppose \(g(C) = 0 \). Then \(KH = -7 \) and \(Y \) is a rational ruled surface by II and III. Finally, by [3, (3) and (2)] we get a contradiction. Hence, \(g(C) = 2 \), \(KH = -3 \), and \(Y \) is ruled. If \(p_a \neq 0 \), then, by III, \(p_a = -2 \), \(K^2 = -8 \), and this contradicts [3, (2)]. Hence, \(g(C) = 2 \), \(p_a = 0 \), and the proof in [3] for \(d = 5 \) \(Y \subset \mathbb{P}^4 \) applies.

(vi) If \(d = 6 \) and \(Y \subset \mathbb{P}^4 \), then, by I, \(g(C) \leq 2 \). If \(g(C) = 0 \), then \(KH = -8 \), and II and III imply that \(Y \) is a rational ruled surface, and this contradicts [3, (2)]. If \(g(C) = 1 \), then \(KH = -6 \), and \(Y \) is ruled. If \(p_a = 0 \), then by [3, Proposition 1.3] \(m \geq 3 \) and \(r_p = 1 \), and by [3, (2)] \(K^2 = 7 \) or 6. If \(K^2 = 7 \), then, by (3) and (6), \(X^2 = 7 \); by (5), \(g(X) = g(C) = 1 \); and by (4), \(0 = 7 - 7/m - 2m \), which is
impossible. Hence, \(K^2 = 6 \), \((a, b) = (3,3)\), and, by (4), \(0 = 8 - 8/m - 2m\), which implies \(m = 2 \). If \(p_a \neq 0 \), then, by II and III, \(Y \) is geometrically ruled with \(p_a = -1 \), \(m = 1 \), \(e = 0 \), \(n = 3 \), and \((a, b) = (3,3)\). If \(g(C) = 2 \) with \(p_a \neq 0 \), then, by II and III, \(Y \) is geometrically ruled with \(p_a = -2 \), and this contradicts [3, (2)]. Hence, if \(g(C) = 2 \), then \(Y \) is a rational ruled surface and the proof in [3] for \(d = 6 \) applies.

(vii) If \(d = 7 \) and \(Y \subset \mathbb{P}^4 \), then, by I, \(g(C) \leq 3 \). If \(g(C) = 0 \), then \(KH = -9 \) and \(Y \) is a rational ruled surface, which contradicts [3, (2)]. If \(g(C) = 1 \), then \(KH = -7 \), and if \(p_a = 0 \), then by [3, (2)], \((a, b) = (3,4)\) and \(Y \) is geometrically ruled, and, by (4), \(2g(C) - 2 = 0 = 7 - 7/m - 2m \), which is impossible. Hence, if \(g(C) = 1 \), then \(p_a \neq 0 \), and, by III, \(p_a = -1 \), \(K^2 = 0 \), and this contradicts [3, (2)].

If \(g(C) = 2 \) and \(p_a = 0 \), then by [3, (2)], \(K^2 = 6 \) or 4, and, by [3, Proposition 1.3], \(m \leq 3 \), whence \(r = 1 \). Hence, by (3) \(X^2 = 9 \) or 11 and, by (4), \(2 = 9 - 9/m - 2m \) or \(2 = 11 - 11/m - 2m \), and both are impossible. Hence, if \(g(C) = 2 \), then \(p_a \neq 0 \), and, by II and III, \(Y \) is geometrically ruled with \(p_a = -2 \), \(C^2 = 7 = 2n - e \), and \(T_0 \cdot C = n - e \geq 5 \), since \(T_0 \) is a nonsingular curve of genus 2; but this contradicts the fact that \(e \geq p_a = -2 \).

Hence, if \(d = 7 \), then \(g(C) = 3 \) and \(KH = -3 \). If \(p_a \neq 0 \), then, by III, \(m \leq 2 \). If \(m = 1 \), then \(r_p = 1 \), \(g(X) = g(C) \), and, by (4), \(p_a = -3 \). Hence, by [3, (2)], \(Y \) is of type (2, 5) and is geometrically ruled with \(e = -1 \), \(n = 3 \), or of type (3, 4) with \(K^2 = -18 \). If \(m = 2 \), by (3)-(5), we get \(9 + 8p_a = s + u \geq 0 \). Therefore \(p_a = -1 \) and, by [3, (2)], \(K^2 = -4 \) or \(-6 \). If \(p_a = 0 \), then the proof in [3] for \(d = 7 \) applies.

(viii) If \(d = 8 \) and \(Y \subset \mathbb{P}^4 \), then, by I, \(g(C) \leq 5 \). Suppose \(g(C) = 0 \). Then \(p_a = 0 \) and [3, (2)] leads us to a contradiction. If \(g(C) = 1 \), then by [3, (2)], \(p_a < 0 \), and, by III, \(p_a = -1 \); hence \(K^2 \leq 0 \), and this contradicts [3, (2)]. If \(g(C) = 2 \) with \(p_a = 0 \), then, by [3, (2)], \(K^2 = 6 \) or 7, and by [3, Proposition 1.3], \(m < 4 \); hence, \(r_p = 1 \), and, by (4), \(2 = 10 - 10/m - 2m \) or \(2 = 9 - 9/m - 2m \), and both are impossible. Hence, if \(g(C) = 2 \), then \(p_a < 0 \), and, by III, \(C \) is a section, \(Y \) is geometrically ruled with \(p_a = -2 \), and \(K^2 = -8 \); but this is impossible by [3, (2)]. Therefore if \(d = 8 \) and \(Y \subset \mathbb{P}^4 \), then \(3 \leq g(C) \leq 5 \).

If \(g(C) = 3 \) with \(p_a = 0 \), then, by [3, Proposition 1.3], \(m \leq 4 \). If \(m < 4 \), then \(r_p = 1 \), and by (5), \(g(X) = 3 \), and, by (4), \(4 = 8 + r - (8 + r)/m - 2m \); but, by [3, (2)], \(K^2 = 6 \), \(3 \), or 2, which are impossible. If \(m = 4 \), then \(r_p \leq 2 \), and, by (3)-(5), \(3s + 4t + 7u = 24 \), and, by (7), \(r = 6 \) or 7 are the only solutions. Hence, by [3, (2)], \(r = 6 \), \(K^2 = 2 \), and \((a, b) = (4,4)\). If \(g(C) = 3 \) with \(p_a < 0 \) and \(Y \) is geometrically ruled, then, by [3, (2)], \(p_a = -1 \) and \((a, b) = (2,6) \) or \(p_a = -3 \) and \((a, b) = (4,4)\). Since \(Y \) is assumed geometrically ruled, we get from (3) and (4) that \(p_a = -1 \) implies \(4 = 8 - 8/m \); hence, \(m = 2 \), \(e = -1 \), \(n = 1 \), and \(p_a = -3 \) imply \(4 = 8 - 8/m + 4m \); hence, \(m = 1 \), \(e = 0 \), \(n = 4 \). If \(g(C) = 3 \) with \(p_a < 0 \) and \(Y \) not geometrically ruled, then, by III, \(m = 2 \) and, by (3)-(5), \(8 + 8p_a = s + u \geq 0 \). Hence, \(p_a = -1 \) and \(Y \) is either of type (3, 5) with \(K^2 = -3 \), or of type (4, 4) with \(K^2 = -4 \). If \(g(C) > 3 \), then the proof in [3] for \(d = 8 \) applies.
REFERENCES

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

Current address: 13 South Stanworth Drive, Princeton, New Jersey 08540