The multiplicity of the Steinberg representation of $\textrm {GL}_ n\textbf {F}_ q$ in the symmetric algebra
HTML articles powered by AMS MathViewer
- by N. J. Kuhn and S. A. Mitchell
- Proc. Amer. Math. Soc. 96 (1986), 1-6
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813797-6
- PDF | Request permission
Abstract:
Let $S(V)$ denote the symmetric algebra on the standard $n$-dimensional representation $V$ of ${\text {G}}{{\text {L}}_n}{{\mathbf {F}}_q}$. The multiplicity series in $S(V)$ for the Steinberg representation St of ${\text {G}}{{\text {L}}_n}{{\mathbf {F}}_q}$ is determined. This series is defined by ${F_{{\text {S}}\text {t}}}(t) = \sum \nolimits _{k = 0}^\infty {{a_k}{t^k}}$ where $a_k$ is the multiplicity of St in the $k$th symmetric power ${S^k}(V)$. We show that ${F_{{\text {S}}t}}(t) = {t^r}\prod \nolimits _{i = 1}^n {{{(1 - {t^{{q^i} - 1}})}^{ - 1}}}$, where $r = \sum \nolimits _{i = 1}^{n - 1} {({q^i} - 1} )$. The proof involves a general property of Tits buildings and a computation of the invariants in $S(V)$ of the parabolic subgroups of ${\text {G}}{{\text {L}}_n}{{\mathbf {F}}_q}$.References
- Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no.Β 1, 75β98. MR 1500882, DOI 10.1090/S0002-9947-1911-1500882-4
- Howard Garland, $p$-adic curvature and the cohomology of discrete subgroups of $p$-adic groups, Ann. of Math. (2) 97 (1973), 375β423. MR 320180, DOI 10.2307/1970829
- Nicholas J. Kuhn, The modular Hecke algebra and Steinberg representation of finite Chevalley groups, J. Algebra 91 (1984), no.Β 1, 125β141. With an appendix by Peter Landrock. MR 765775, DOI 10.1016/0021-8693(84)90130-3
- Nicholas J. Kuhn, Chevalley group theory and the transfer in the homology of symmetric groups, Topology 24 (1985), no.Β 3, 247β264. MR 815479, DOI 10.1016/0040-9383(85)90001-1
- Stephen A. Mitchell, Finite complexes with $A(n)$-free cohomology, Topology 24 (1985), no.Β 2, 227β246. MR 793186, DOI 10.1016/0040-9383(85)90057-6
- Stephen A. Mitchell and Stewart B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no.Β 3, 285β298. MR 710102, DOI 10.1016/0040-9383(83)90014-9
- Huα»³nh Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no.Β 3, 319β369. MR 422451
- Louis Solomon, The Steinberg character of a finite group with $BN$-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York, 1969, pp.Β 213β221. MR 0246951
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no.Β 3, 475β511. MR 526968, DOI 10.1090/S0273-0979-1979-14597-X
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp.Β 421β434. MR 711066, DOI 10.1090/conm/019/711066
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 1-6
- MSC: Primary 20G40; Secondary 20G05, 20J06, 55R40, 55S10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813797-6
- MathSciNet review: 813797