Modules determined by their tops and socles
HTML articles powered by AMS MathViewer
- by K. Bongartz and S. O. Smalø
- Proc. Amer. Math. Soc. 96 (1986), 34-38
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813804-0
- PDF | Request permission
Abstract:
We prove that a module in a preprojective component of the Auslander-Reiten quiver of an artin algebra is determined by its top and socle. Also other invariants determining such a module are given.References
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- Maurice Auslander and Idun Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), no. 2, 280–301. MR 784524
- Klaus Bongartz, Quadratic forms and finite representation type, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984) Lecture Notes in Math., vol. 1146, Springer, Berlin, 1985, pp. 325–339. MR 873092, DOI 10.1007/BFb0074545
- Dieter Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), no. 1, 29–31. MR 663860, DOI 10.1090/S0002-9939-1982-0663860-4
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2
- C. M. Ringel, Unzerlegbare Darstellungen endlich-dimensionaler Algebren, Jahresber. Deutsch. Math.-Verein. 85 (1983), no. 2, 86–105 (German). MR 698320
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 34-38
- MSC: Primary 16A64; Secondary 16A46
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813804-0
- MathSciNet review: 813804