On weighted integrability of trigonometric series and $L^ 1$-convergence of Fourier series
HTML articles powered by AMS MathViewer
- by William O. Bray and Časlav V. Stanojević
- Proc. Amer. Math. Soc. 96 (1986), 53-61
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813809-X
- PDF | Request permission
Abstract:
A result concerning integrability of $f(x)L(1/x)(g(x)L(1/x))$, where $f(x)(g(x))$ is the pointwise limit of certain cosine (sine) series and $L( \cdot )$ is slowly vary in the sense of Karamata [5] is proved. Our result is an excluded case in more classical results (see [4]) and also generalizes a result of G. A. Fomin [1]. Also a result of Fomin and Telyakovskii [6] concerning ${L^1}$-convergence of Fourier series is generalized. Both theorems make use of a generalized notion of quasi-monotone sequences.References
- G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), no. 2, 213–222 (Russian). MR 487218
- William O. Bray, On a theorem of Stanojević, Proc. Amer. Math. Soc. 83 (1981), no. 1, 59–62. MR 619981, DOI 10.1090/S0002-9939-1981-0619981-4
- William O. Bray and Vera B. Stanojevic, On the integrability of complex trigonometric series, Proc. Amer. Math. Soc. 93 (1985), no. 1, 51–58. MR 766526, DOI 10.1090/S0002-9939-1985-0766526-8
- Ralph P. Boas Jr., Integrability theorems for trigonometric transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38, Springer-Verlag New York, Inc., New York, 1967. MR 0219973, DOI 10.1007/978-3-642-87108-5 J. Karamata, Sur un mode de croissance reguliere des fonctions, Mathematica (Cluj) 4 (1930), 38-53. G. A. Fomin and S. A. Telyakovskii, On convergence in ${L^1}$-metric of Fourier series with quasi-monotone coefficients, Trudy Mat. Inst. Acad. Sci. USSR 134 (1975), 310-314.
- J. W. Garrett, C. S. Rees, and Č. V. Stanojević, On $L^{1}$ convergence of Fourier series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 72 (1978), no. 3, 535–538. MR 509250, DOI 10.1090/S0002-9939-1978-0509250-5
- Otto Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203–206. MR 22917, DOI 10.2307/2371946 J. Karamata, Sur certains "Tauberian Theorems" de M. M. Hardy et Littlewood, Mathematica (Cluj) 3 (1930), 33-48. S. Aljancic, R. Bojanic and M. Tomic, Slowly varying functions with remainder term and their applications in analysis, Serbian Acad. Sci. and Arts Monographs, vol. 461, Math. Inst. Beograd, 1974.
- Friedrich Riesz, Über eine Verallgemeinerung der Parsevalschen Formel, Math. Z. 18 (1923), no. 1, 117–124 (German). MR 1544624, DOI 10.1007/BF01192400
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 53-61
- MSC: Primary 42A20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813809-X
- MathSciNet review: 813809