An error estimate for continued fractions
HTML articles powered by AMS MathViewer
- by John Gill
- Proc. Amer. Math. Soc. 96 (1986), 71-74
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813813-1
- PDF | Request permission
Abstract:
New and improved truncation error bounds are derived for continued fractions $K({a_n}/1)$, where ${a_n} \to 0$. The geometrical approach is somewhat unusual in that it involves both isometric circles and fixed points of bilinear transformations.References
- L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929, pp. 23-30.
- John Gill, Converging factors for continued fractions $K(a_{n}/1)$, $a_{n}\rightarrow 0$, Proc. Amer. Math. Soc. 84 (1982), no. 1, 85–88. MR 633283, DOI 10.1090/S0002-9939-1982-0633283-2 —, Truncation error analysis for continued fractions $K({a_n}/1)$, where $\sqrt {|{a_n}|} + \sqrt {|{a_{n-1}}|} < 1$, Lecture Notes in Math., vol. 932, Springer-Verlag, Berlin and New York, 1982, pp. 71-73. —, Modifying factors for sequence of linear fractional transformations, Norske Vid. Selsk. Skr. (Trondheim) 3 (1978), 1-7.
- William B. Jones and R. I. Snell, Truncation error bounds for continued fractions, SIAM J. Numer. Anal. 6 (1969), 210–221. MR 247737, DOI 10.1137/0706019
- W. J. Thron and H. Waadeland, Accelerating convergence of limit periodic continued fractions $K(a_{n}/1)$, Numer. Math. 34 (1980), no. 2, 155–170. MR 566679, DOI 10.1007/BF01396057
- W. J. Thron and Haakon Waadeland, Truncation error bounds for limit periodic continued fractions, Math. Comp. 40 (1983), no. 162, 589–597. MR 689475, DOI 10.1090/S0025-5718-1983-0689475-9
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 71-74
- MSC: Primary 40A15; Secondary 30B70
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813813-1
- MathSciNet review: 813813