HOPF FORMULA AND MULTITIME HAMILTON-JACOBI EQUATIONS

P. L. LIONS AND J-C. ROCHET

ABSTRACT. Problems arising in mathematical economics lead to the study of multitime Hamilton-Jacobi equations. Using commutation properties of the semigroups for the standard equation, we propose a generalization of the Hopf formula that gives explicit solutions of these equations.

I. Hopf formula. We consider the following Cauchy problem for the Hamilton-Jacobi equation:

M. G. Crandall and P. L. Lions [2, 3] introduced the notion of viscosity solution of (1): In particular, they proved the existence and uniqueness of a viscosity solution of (1) in BUC($\mathbb{R}^N \times [0, T]$) when H is continuous on \mathbb{R}^N and u_0 belongs to BUC(\mathbb{R}^N), the set of functions bounded and uniformly continuous on \mathbb{R}^N . This solution is denoted by $(S_H(t)u_0)(x)$. Of course, the family $(S_H(t))_{t\geq 0}$ defines a strongly continuous semigroup on BUC(\mathbb{R}^N).

When u_0 is in BUC(\mathbb{R}^N) and H is convex and coercive (i.e., $\lim_{|p| \to +\infty} H(p)/|p| = +\infty$), this viscosity solution is given explicitly by the Oleinik-Lax formula (cf. [7])

(2)
$$u(x,t) = \inf_{y \in \mathbb{R}^N} \sup_{z \in \mathbb{R}^N} \{ u_0(y) + (z, x - y) - tH(z) \}.$$

A proof of this fact may be found in Lions [8]. This can also be written

(3)
$$u(x,t) = \inf_{y \in \mathbb{R}^N} \left\{ u_0(y) + tH^*\left(\frac{x-y}{t}\right) \right\}$$

where H^* is the Fenchel conjugate of H:

(4)
$$H^*(p) = \sup_{z \in \mathbb{R}^N} \{ (p, z) - H(z) \}.$$

On the other hand, when u_0 is convex and H is continuous, Hopf [5] proposed the following formula (dual of (2)):

(5)
$$v(x,t) = \sup_{z \in \mathbb{R}^N} \inf_{y \in \mathbb{R}^N} \{ u_0(y) + (z, x - y) - tH(z) \}.$$

Received by the editors September 17, 1984.

1980 Mathematics Subject Classification. Primary 35L60, 35L45, 35F20, 49C05.

This can also be written

(6)
$$v(x,t) = \sup_{z \in \mathbb{R}^N} \{(x,z) - u_0^*(z) - tH(z)\}$$

or

(7)
$$v(x,t) = (u_0^* + tH)^*(x).$$

The Hopf formula defines a convex function, which is a solution of (1) for a.e. (x, t) in its domain. This domain will be all of \mathbb{R}^N , provided that the following property is fulfilled:

(8)
$$\lim_{|p| \to +\infty} \frac{u_0^*(p) + tH(p)}{|p|} = +\infty, \text{ uniformly for } t \text{ in } [0, T].$$

The following shows that v is a viscosity solution of (1): This fact (under slightly less general assumptions) was proved in Bardi and Evans [1], but our method is simpler and more direct.

PROPOSITION 1. Under assumption (8), if u_0 is convex and u_0 , H are continuous, the Hopf formula defines a viscosity solution of (1).

REMARK. Of course, if $u_0 \in UC(\mathbb{R}^N)$, u_0 is in fact Lipschitz on \mathbb{R}^N , and, thus, v given by (7), satisfies $D_x v \in L^{\infty}(\mathbb{R}^N \times]0, T[)$. Then v is the unique viscosity solution with this regularity in view of [4, 6, and 2].

Proposition 1 is a consequence of the following lemma, which ensures that the Hopf formula defines a semigroup.

LEMMA 1. For any functions u_0 , H from \mathbb{R}^N to \mathbb{R} and any positive numbers t, s we have

(9)
$$\left(\left(u_0^* + tH \right)^{**} + sH \right)^* = \left(u_0^* + (t+s)H \right)^*.$$

PROOF OF LEMMA 1. Since for all u, $u^{**} \le u$, and since Fenchel's transformation is order-reversing, we have

$$(u_0^* + tH)^{**} + sH \le u_0^* + (t+s)H$$

and

$$((u_0^* + tH)^{**} + sH)^* \ge (u_0^* + (t+s)H)^*.$$

For the other inequality let us remark that

$$\frac{s}{t+s}u_0^* + \frac{t}{t+s}(u_0^* + (t+s)H)^{**} \leq u_0^* + tH.$$

Since the left side is convex, we get

$$\frac{s}{t+s}u_0^* + \frac{t}{t+s} (u_0^* + (t+s)H)^{**} \leq (u_0^* + tH)^{**}.$$

Thus

$$\left(u_0^* + (t+s)H\right)^{**} - \left(u_0^* + tH\right)^{**} \leqslant (s/t) \left[\left(u_0^* + tH\right)^{**} - u_0^* \right] \leqslant sH.$$

Consequently,

$$(u_0^* + (t+s)H)^{**} \le (u_0^* + tH)^{**} + sH.$$

Taking conjugates, we obtain our second inequality. □

PROOF OF PROPOSITION 1. We already know that (7) defines a convex function satisfying (1) at each point of differentiability. In particular, it is a viscosity subsolution of (1) for if v is superdifferentiable at (x, t) then it is also differentiable and, thus,

$$(\partial v/\partial t)(x,t) + H(Dv(x,t)) = 0$$

(this is in fact a very special case of arguments given in Lions [8]). Let us now prove that v is also a viscosity supersolution. In other words, we have to show that, for any (x_0, t_0) in $\mathbb{R}^N \times [0, T]$ and (p, q) in the subdifferential of v at (x_0, t_0) , we have

$$q+H(p)\geqslant 0.$$

To prove this inequality, we adapt the arguments of Lions and Nisio [9]. By convexity and the definition of the subdifferential of v, we have

(10)
$$\forall (x,t) \in \mathbb{R}^N \times [0,T], \quad v(x,t) \geqslant v(x_0,t_0) + (p,x-x_0) + q(t-t_0).$$

Let us denote by $\overline{S}_H(t)$ the semigroup defined by (8):

$$\overline{S}_H(t)u_0 = (u_0^* + tH)^*.$$

By Lemma 1 we have for any s in $[0, t_0]$,

$$v(x_0,t_0) = \left[\overline{S}_H(s)v(\cdot,t_0-s)\right](x_0).$$

Since $\overline{S}_H(s)$ is order preserving, we get, by (10),

$$v(x_0,t_0) \geqslant (\bar{S}_H(s)\varphi)(x_0),$$

where $\varphi(x) = v(x_0, t_0) + (p, x - x_0) - sq$. Thus

$$v(x_0, t_0) \ge \sup_{z \in \mathbb{R}^N} \{(z, x_0) - t_0 H(z) - \varphi^*(z)\}.$$

But

$$\varphi^*(z) = \begin{cases} sq - v(x_0, t_0) + px_0 & \text{if } z = p, \\ +\infty & \text{if } z \neq p. \end{cases}$$

Consequently, $v(x_0, t_0) \ge -sq - t_0 H(p) + v(x_0, t_0)$. Thus, for any s in $[0, t_0]$ we get

$$sq + t_0 H(p) \geqslant 0,$$

which implies, in particular, that $q + H(p) \ge 0$. \square

REMARK. If we consider the natural extension of (1)

then a natural extension of the Hopf formula is

(6')
$$v(x,t) = \sup_{z \in \mathbb{R}^N} \left\{ (x,z) - u_0^*(z) - \int_0^t H(s,z) \, ds \right\}$$

or

(7')
$$v(x,t) = \left(u_0^* + \int_0^t H(s,\cdot) \, ds\right)^*(x).$$

But (6'), (7') do not define a viscosity solution of (1); indeed, if this were the case, this formula would define an evolution operator and, by a density argument $(u_0^* \to 0)$, we would have

$$\left\{ \left(\int_0^t H(\lambda, \cdot) d\lambda \right)^{**} + \int_t^{t+s} H(\lambda, \cdot) d\lambda \right\}^* = \left(\int_0^{t+s} H(\lambda, \cdot) d\lambda \right)^*$$

for all $t, s \ge 0$, and this is, in general, false! \square

II. Commutation of the semigroups. The Hopf formula sheds some light on a new property of commutation of the semigroups:

PROPOSITION 2. If u_0 , H_1 , H_2 are convex, continuous, and such that (8) holds for H_1 and H_2 , then we have for all positive t, s,

(11)
$$S_{H_1}(t)S_{H_2}(s)u_0 = S_{H_2}(s)S_{H_1}(t)u_0 = S_{tH_1+sH_2}(1)u_0.$$

PROOF. $S_{H_1}(t)S_{H_2}(s)u_0 = [(u_0^* + sH_2)^{**} + tH_1]^*$. If H_2 is convex this is equal to

$$S_{tH_1+sH_2}(1)u_0 = \left[u_0^* + tH_1 + sH_2\right]^*. \quad \Box$$

It is easy to find a counterexample to (11) if H_1 and H_2 are not convex. On the other hand, a reexamination of the Lax formula shows that the commutation property can also be proved for u_0 in BUC(\mathbb{R}^N) and convex continuous H_1 and H_2 .

PROPOSITION 3. If $u_0 \in BUC(\mathbb{R}^N)$ and H_1 , H_2 are convex, then (11) holds for any positive t, s.

PROOF. By the Oleinik-Lax formula we have

$$\left(S_{H_1}(t)S_{H_2}(s)u_0\right)(x) = \inf_{z \in \mathbb{R}^N} \inf_{y \in \mathbb{R}^N} \left\{u_0(y) + (tH_1)^*(x-z) + (sH_2)^*(z-y)\right\}.$$

But

$$\inf_{z \in \mathbb{R}^N} \left\{ (tH_1)^* (x-z) + (sH_2)^* (z-y) \right\} = (tH_1 + sH_2)^* (x-y).$$

Thus

$$(S_{H_1}(t)S_{H_2}(s)u_0)(x) = (S_{tH_1+sH_2}(1)u_0)(x). \quad \Box$$

REMARK. The same commutation property obviously holds for small t, if u_0 , H_1 , H_2 are smooth; indeed by the method of characteristics (see, for example, [8]) we have the following: Let $v = S_{tH_1 + sH_2}(1)u_0(x)$. Then for t, s small there exists a unique x_1 in \mathbb{R}^N such that

$$x_1 + tH_1'(Du_0(x_1)) + sH_2'(Du_0(x_1)) = x, Du_0(x_1) = D_xv(x, t, s), v(x, t, s) = u_0(x_1) + t\{H_1' \cdot Du_0(x_1) - H_1\} + s\{H_2' \cdot Du_0(x_1) - H_2\}.$$

Next if we set $x_2 = x_1 + tH'_1(Du_0(x_1))$, we have

$$Du_0(x_1) = D_x(S_{H_1}(t)u_0)(x_2), \ S_{H_1}(t)u_0(x_2) = u_0(x_1) + t\{H_1' \cdot Du_0(x_1) - H_1\},$$

and observing that $x = x_2 + sH'_2(D_x(S_{H_1}(t)u_0)(x_2))$, we conclude that

$$v(x, t, s) = S_{H_2}(s)S_{H_1}(t)u_0(x)$$
 for small $t, s \ge 0$.

Still for small t, s, the same property would hold for general Hamiltonians $H_1(x, p)$, $H_2(x, p)$, provided we have

$$\frac{\partial H_1}{\partial p} \cdot \frac{\partial H_2}{\partial x} - \frac{\partial H_1}{\partial x} \cdot \frac{\partial H_2}{\partial p} = 0 \quad \text{on } \mathbf{R}^N \times \mathbf{R}^N;$$

i.e., $[H_1, H_2] = 0$ $(H_1, H_2 \text{ are in involution})!$

III. Multitime equations. Problems arising in mathematical economics [10] lead to the following Cauchy problem for what we call (by analogy) the multitime Hamilton-Jacobi equation:

(12)
$$\frac{\partial u/\partial t + H_1(Du) = 0}{\partial u/\partial s + H_2(Du) = 0} \quad \text{in } \mathbf{R}^N \times [0, T]^2,$$

$$u(x, 0, 0) = u_0(x) \quad \text{in } \mathbf{R}^N.$$

Notice that (12) is apparently an overdetermined system of p.d.e.'s.

As a consequence of Propositions 2 and 3, we obtain explicit formulae giving weak solutions of (12).

PROPOSITION 4. If u_0 is convex on \mathbb{R}^N , u_0 , H_1 , H_2 are continuous and if (8) holds for H_1 and H_2 then formula (13) defines a convex function v on $\mathbb{R}^N \times [0, T]^2$, solving (12) a.e.

(13)
$$v(x,t,s) = (u_0^* + tH_1 + sH_2)^*.$$

PROPOSITION 5. If $u_0 \in BUC(\mathbb{R}^N)$, H_1 , H_2 are convex continuous, and if either $Du_0 \in L^{\infty}$, or H_1 , H_2 are coercive, then

$$V = S_{H_1}(t)S_{H_2}(s)u_0 = S_{H_2}(s)S_{H_1}(t)u_0 = S_{tH_1+sH_2}(1)u_0$$

is Lipschitz on $\mathbb{R}^N \times [\varepsilon, T]^2$ for any $\varepsilon > 0$ and solves (12) a.e.

REMARKS. (i) In Proposition 4, for fixed t > 0, v is *not*, in general, a viscosity solution of $\partial u/\partial s + H_2(Du) = 0$, although this is true in Proposition 5. However, in both cases $v = S_{tH_1+sH_2}(1)u_0$, and thus v is a viscosity solution on each half-line connecting (0,0) with (t,s).

- (ii) If u_0 , H_1 , H_2 are smooth (say $W^{2,\infty}(\mathbf{R}^N)$), then we may apply the method of characteristics (cf. Remark in §II), which yields that $v = S_{H_1}(t)S_{H_2}(s)u_0$ is a smooth solution of (12) provided T is small $(T < T_0(u_0, H_1, H_2))$.
- (iii) Except for these special cases, we do not know if (12) admits global solutions for every H_1 , H_2 , u_0 : A good tentative solution could be $S_{tH_1+sH_2}(1)u_0$, but we are unable to decide if it solves (12) a.e.
- (iv) Of course, Propositions 4-5 extend to an arbitrary number of times—that is, m equations in $\mathbb{R}^N \times [0, T]^m$ involving m different Hamiltonians for a *single* unknown function.

REFERENCES

- 1. M. Bardi and L. C. Evans, On Hopf's formulas for solutions of Hamilton-Jacobi equations, preprint.
- 2. M. G. Crandall and P. L. Lions, Conditions d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris 292 (1981), 183-186.
 - 3. _____, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
- 4. _____, Solutions de viscosité non bornées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris (in preparation).
- 5. E. Hopf, Generalized solutions of nonlinear equations of first order, J. Math. Mech. 14 (1965), 951-973.
 - 6. H. Ishii, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, preprint.
 - 7. P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566.
 - 8. P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982.
- 9. P. L. Lions and M. Nisio, A uniqueness result for the semigroup associated with the Hamilton Jacobi Bellman operation, Proc. Japan Acad. Math. Sci. 58 (1982), 273-276.
- 10. J. C. Rochet, The taxation principle and multi-time Hamilton-Jacobi equations, preprint, Univ. Paris IX.

CEREMADE, PARIS IX UNIVERSITY, PLACE DE LATTRE DE TASSIGNY, 75775 PARIS CEDEX 16, FRANCE