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HOPF FORMULA AND MULTITIME
HAMILTON-JACOBI EQUATIONS

P. L. LIONS AND J-C. ROCHET

ABSTRACT. Problems arising in mathematical economics lead to the study of multi-
time Hamilton-Jacobi equations. Using commutation properties of the semigroups
for the standard equation, we propose a generalization of the Hopf formula that
gives explicit solutions of these equations.

I. Hopf formula. We consider the following Cauchy problem for the Hamilton-
Jacobi equation:

d,/8t + H(Du) =0 inR" x[0,T],

) u(x,0) = uy(x) in RV,

M. G. Crandall and P. L. Lions [2, 3] introduced the notion of viscosity solution of
(1): In particular, they proved the existence and uniqueness of a viscosity solution of
(1) in BUC(RY X [0, T']) when H is continuous on R" and u, belongs to BUC(R"),
the set of functions bounded and uniformly continuous on RY. This solution is
denoted by (Sy(t)uy)(x). Of course, the family (Sy(?)),,, defines a strongly
continuous semigroup on BUC(RV).

When u, is in BUC(R") and H is convex and coercive (i.e., lim sl—+00 H(P)/IPI
= + o0), this viscosity solution is given explicitly by the Oleinik-Lax formula (cf. [7])
(2) u(x,t) = Ien'EN Sup {uy(y) +(z,x —y) —tH(z)}.

v

zeRV

A proof of this fact may be found in Lions [8]. This can also be written

(3) u(x,1) = _,.Ie“.f~{“°(y) ek :y)}

where H * is the Fenchel conjugate of H:
(4) H*(p) = Sup {(p.z) - H(z)}.
zeRV
On the other hand, when u, is convex and H is continuous, Hopf [S] proposed the
following formula (dual of (2)):

(5) v(x,t) = Sup Inf {uy(y)+(z,x —y)—tH(z)}.

zeRV yeRY
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This can also be written

(6) v(x,1) = Sup {(x,z) — uf(z) — tH(z)}
zeRV

or

(7) v(x,t) = (ud + tH)*(x).

The Hopf formula defines a convex function, which is a solution of (1) for a.e. (x, ¢)
in its domain. This domain will be all of R", provided that the following property is
fulfilled:

. uf(p) +tH(p)
® |p|l—l>n:oo | Pl

The following shows that v is a viscosity solution of (1): This fact (under slightly less
general assumptions) was proved in Bardi and Evans [1], but our method is simpler
and more direct.

= + 00, uniformly for ¢ in [0, T].

PROPOSITION 1. Under assumption (8), if u, is convex and u,, H are continuous,
the Hopf formula defines a viscosity solution of (1).

REMARK. Of course, if u, € UCRY), u, is in fact Lipschitz on R, and, thus, v
given by (7), satisfies D,v € L®(R" X 10, T[). Then v is the unique viscosity solution
with this regularity in view of [4, 6, and 2].

Proposition 1 is a consequence of the following lemma, which ensures that the
Hopf formula defines a semigroup.

LEMMA 1. For any functions u,, H from R" to R and any positive numbers t, s we
have

(9) ((u;’;+IH)**+sH)*=(ua"+(t+s)H)*.

ProOOF OF LEMMA 1. Since for all u, u** < u, and since Fenchel’s transformation
is order-reversing, we have

(ug +H)*™  + sH<ul +(1+s)H
and
((u;;‘ +tH)™ + sH)* > (ut +(t+s)H)".

For the other inequality let us remark that
S
*
+
r+s%0 T s
Since the left side is convex, we get

(uf +(t+s)H)"™ < uf +tH.

t
g+ (ug () H)™ < (ug 4 H)™

Thus
(ug + (e + ) H)™ = (ug + tH)*™ < (s/0)[(ug + tH)** — ug] < sH.
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Consequently,
(ug +(t+s)H)"™ < (up +tH)*" + sH.

Taking conjugates, we obtain our second inequality. O

PROOF OF ProPOSITION 1. We already know that (7) defines a convex function
satisfying (1) at each point of differentiability. In particular, it is a viscosity
subsolution of (1) for if v is superdifferentiable at (x, ¢) then it is also differentiable
and, thus,

(39v/3t)(x,1) + H(Dv(x,1)) =0

(this is in fact a very special case of arguments given in Lions [8]). Let us now prove
that v is also a viscosity supersolution. In other words, we have to show that, for any
(x5 20) in RY X [0, T] and ( p, q) in the subdifferential of v at (x, t,), we have

g+ H(p)>0.

To prove this inequality, we adapt the arguments of Lions and Nisio [9]. By
convexity and the definition of the subdifferential of v, we have

(10) V(x,t) € R¥X[0,T], ov(x,t)>v(xq,2) +(p,x — x0) +q(t — 15).
Let us denote by S () the semigroup defined by (8):
Su()ug=(ug +tH)".
By Lemma 1 we have for any s in [0, ¢,],
v(xg, o) = [S;H(S)U(',’o - S)](xo)-
Since Sy (s) is order preserving, we get, by (10),
v(xg,19) > (§H(S)¢)(xo)»
where @(x) = v(xy, 1) + (P, x — xy) — sq. Thus
v(xg,20) > sup {(Z,xo) —t,H(z) - (p*(z)}.

zeRV
But
sq — v(xy, 1) + px, ifz=p,
‘P*(Z)={f (xo:10) +pxo ifz=p
00 if z # p.
Consequently, v(xy,t5) = —sq — toH(p) + v(x,, ty). Thus, for any s in [0, ¢,] we
get
sq + t,H(p) > 0,
which implies, in particular, that ¢ + H(p) > 0. O
REMARK. If we consider the natural extension of (1)

du/dt + H(t,Du) =0 inR" x]0,T],

1/

) u(x,0) = uy(x) inRY,

then a natural extension of the Hopf formula is

(6”) v(x,t) = sup {(x,z)—ug(z)—ft H(s,z)ds}
0

zeRY
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or

(7") v(x,t) = (ug‘ +./(: H(s,-)ds)*(x).

But (6),(7) do not define a viscosity solution of (1); indeed, if this were the case,
this formula would define an evolution operator and, by a density argument
(u¢ — 0), we would have

{(fo HO ')d}‘)** A H(A{')d"}* B (fo+ H(A, ')d>\)*

for all ¢, s > 0, and this is, in general, false! O

I1. Commutation of the semigroups. The Hopf formula sheds some light on a new
property of commutation of the semigroups:

PROPOSITION 2. If u,, H,, H, are convex, continuous, and such that (8) holds for
H, and H,, then we have for all positive t, s,

(11) Sy, (£)Sy,(s)ug = Sy (s)Sy()ug = S,y 4 su,(1) 4.

PROOF. Sy, (1)Sy (s)ug = [(ug + sHy)** + tH]*.
If H, is convex this is equal to

Sen +sm,(1) g = [u(’;‘ + tH, + sHZ]*. a

It is easy to find a counterexample to (11) if H, and H, are not convex. On the
other hand, a reexamination of the Lax formula shows that the commutation
property can also be proved for u, in BUC(RY) and convex continuous H, and H,.

PROPOSITION 3. If u, € BUC(RY) and H,, H, are convex, then (11) holds for any
positive t, s.

PROOF. By the Oleinik-Lax formula we have
(Si(1)Su(s)o)(x) = Inf - Inf {ug(y) +(eHy)(x = 2) +(sHy)"(z = ).
But |
:IenlfN{(tHl)*(x = z) +(sH,)*(z = y)} = (tH, + sHy)*(x - y).
Thus
(81, ()S,(5)0)(x) = (S, v, (Dt ) (x). O

REMARK. The same commutation property obviously holds for small ¢, if u,
H,, H, are smooth; indeed by the method of characteristics (see, for example, [8]) we
have the following: Let v =S, . 4 (1)uo(x). Then for 7,5 small there exists a
unique x, in RY such that

x, + tH{(Duy(x,)) + sH;(Duy(x,)) = x, Duy(x,) = Dy(x,t,s),
v(x,t,5) = uo(x;) + t{ H{ - Duy(x,) — H} + s{ H; - Duy(x,) — H, }.
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Next if we set x, = x; + tH{(Duy(x,)), we have
Duy(x,) = Dx(SH,(t)“o)(xz)» SH,(t)uO(xZ) = up(x;) + t{Hf * Duy(x,) — Hl}’
and observing that x = x, + sH;( D,(Sy (t)uy)(x,)), we conclude that

v(x,t,5) =Sy (s)Sy (t)ue(x) forsmallz, s > 0.

Still for small ¢, s, the same property would hold for general Hamiltonians H,(x, p),
H,(x, p), provided we have ‘

0H, 0H, 0H, OdH, N .

op ax  ox op 0 OMRUXRE

i.e, [H,, H,] = 0 (H,, H, are in involution)!

III. Multitime equations. Problems arising in mathematical economics [10] lead to
the following Cauchy problem for what we call (by analogy) the multitime Hamil-
ton-Jacobi equation:

du/dt + H(Du) =0 inRY x[0,T]?,
(12) du/ds + Hy(Du) =0 inRY x[0,T]?
u(x,0,0) = uy(x) in RV,
Notice that (12) is apparently an overdetermined system of p.d.e.’s.

As a consequence of Propositions 2 and 3, we obtain explicit formulae giving weak
solutions of (12).

PROPOSITION 4. If u is convex on R, u,, H,, H, are continuous and if (8) holds
for H, and H, then formula (13) defines a convex function v on RN X [0, T1?, solving
(12) a.e.

(13) v(x,t,5) = (u + tH, + sH,)".

PROPOSITION 5. If u, € BUCRY), H,, H, are convex continuous, and if either
Duy € L, or H,, H, are coercive, then

V= SH,(I)SHZ(s)uO = SHZ(S)SH,(t)uO = StHl+sH2(1)uO
is Lipschitz on RN X [&,T)?* for any € > 0 and solves (12) a.e.

REMARKS. (i) In Proposition 4, for fixed ¢ > 0, v is not, in general, a viscosity
solution of du/ds + H,(Du) = 0, although this is true in Proposition 5. However, in
both cases v = S, ;5 (1)u,, and thus v is a viscosity solution on each half-line
connecting (0, 0) with (¢, s).

(i) If uy, H,, H, are smooth (say W2>*(R")), then we may apply the method of
characteristics (cf. Remark in §II), which yields that v = Sy, (1)Sy,(s)u, is a smooth
solution of (12) provided T is small (T’ < Ty(u,, H,, H,)).

(iii) Except for these special cases, we do not know if (12) admits global solutions
for every H,, H,, uy: A good tentative solution could be S, . ., (1)u,, but we are
unable to decide if it solves (12) a.e.

(iv) Of course, Propositions 4-5 extend to an arbitrary number of times— that is,
m equations in RY X [0,T]™ involving m different Hamiltonians for a single
unknown function.
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