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HOPF FORMULA AND MULTITIME

HAMILTON-JACOBI EQUATIONS

P. L. LIONS AND J-C. ROCHET

Abstract. Problems arising in mathematical economics lead to the study of multi-

time Hamilton-Jacobi equations. Using commutation properties of the semigroups

for the standard equation, we propose a generalization of the Hopf formula that

gives explicit solutions of these equations.

I. Hopf formula. We consider the following Cauchy problem for the Hamilton-

Jacobi equation:

ou/ot + H(Du) = 0    mRNx[0,T],

u(x,0)i- u0(x) inR^.

M. G. Crandall and P. L. Lions [2, 3] introduced the notion of viscosity solution of

(1): In particular, they proved the existence and uniqueness of a viscosity solution of

(1) in BUC(RW X [0, T]) when H is continuous on R" and u0 belongs to BUQR*),

the set of functions bounded and uniformly continuous on RN. This solution is

denoted by (SH(t)u0)(x). Of course, the family (SH(t))t>0 defines a strongly

continuous semigroup on BUQR^).

When u0 is in BUQR^) and H is convex and coercive (i.e., lim, ,_ + 00 H(p)/\p\

= + oo), this viscosity solution is given explicitly by the Oleinik-Lax formula (cf. [7])

(2) u(x,t)=   Inf    Sup {u0(y)+(z,x-y)-tH(z)).
.'•eRV   :E|t*

A proof of this fact may be found in Lions [8]. This can also be written

(3) u(x,t) =   M {«„(.y) + tH*{^)}

where H* is the Fenchel conjugate of H:

(4) H*(p)= Sup {(p,z)~H(z)).
-eRv

On the other hand, when u0 is convex and H is continuous, Hopf [5] proposed the

following formula (dual of (2)):

(5) v(x,t)=Sup    Inf {u0(y)+(z,x-y)-tH(z)}.
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This can also be written

(6) v(x, t) = Sup {(x, z) - u*(z) - tH(z)}

or

(7) v(x,t) = (u* + tH)*(x).

The Hopf formula defines a convex function, which is a solution of (1) for a.e. (x, t)

in its domain. This domain will be all of R^, provided that the following property is

fulfilled:

(8) lim     ulLtUjLßLll = + oo >    uniformly for iin[0J].
\p\->+oo \P\

The following shows that v is a viscosity solution of (1): This fact (under slightly less

general assumptions) was proved in Bardi and Evans [1], but our method is simpler

and more direct.

Proposition 1. Under assumption (8), // u0 is convex and u0, H are continuous,

the Hopf formula defines a viscosity solution of (1).

Remark. Of course, if u0 e UQR^), w0 is in fact Lipschitz on R^, and, thus, v

given by (7), satisfies Dxv e LX(RN X ]0, T[). Then v is the unique viscosity solution

with this regularity in view of [4, 6, and 2].

Proposition 1 is a consequence of the following lemma, which ensures that the

Hopf formula defines a semigroup.

Lemma 1. For any functions u0, H from RN to R and any positive numbers t, s we

have

(9) ((«* + tH)** + sH)* = («J +(/ + s)H)*.

Proof of Lemma 1. Since for all u, u** < u, and since Fenchel's transformation

is order-reversing, we have

(u* + tH)** + sH < «* +(t + s)H

and

((u* + tH)** + sH)* > (u* +{t + s)H)*.

For the other inequality let us remark that

7T7"* + 7T7(M* +(f + 5>//)** < "o + tH.

Since the left side is convex, we get

7T7M* + 7T7("o +(r + *)")** < ("o + tH)**.

Thus

(u* +(/ + s)H)** -(u* + tH)** < (s/t)[(u* + tH)** - «j] < sH.
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Consequently,

(u* +(t + s)H)** < (u* + tH)** + sH.

Taking conjugates, we obtain our second inequality.    D

Proof of Proposition 1. We already know that (7) defines a convex function

satisfying (1) at each point of differentiability. In particular, it is a viscosity

subsolution of (1) for if v is superdifferentiable at (x, t) then it is also differentiable

and, thus,

(öv/dt)(x,t) + H(Dv(x,t)) = 0

(this is in fact a very special case of arguments given in Lions [8]). Let us now prove

that v is also a viscosity supersolution. In other words, we have to show that, for any

(x0, t0) in R^ X [0, T] and (p, q) in the subdifferential of v at (x0, t0), we have

q + H(p) 5*0.

To prove this inequality, we adapt the arguments of Lions and Nisio [9]. By

convexity and the definition of the subdifferential of v, we have

(10)    V(í,í)eR*x[0,r],        v(x,t)> v(x0,t0) +(p,x-x0) +q(t- t0).

Let us denote by SH(t) the semigroup defined by (8):

S„(t)u0=(u* + tH)*.

By Lemma 1 we have for any s in [0, t0],

v(x0,t0) = [SH(s)v(-,t0 - s)](x0).

Since SH(s) is order preserving, we get, by (10),

v(x0,tft) > {SH(s)q>)(x0),

where <p(x) = v(x0, t0) + (p,x - x0) - sq. Thus

v(x0,tQ)>  sup {(z,xQ)-t0H(z)-cp*(z)).

zeR*

But

'sq - v(x0,tQ) + px0     if z=p.
<p*(z)

[ + oo it z # p.

Consequently, v(xQ, t0) ^ -sq - t0H(p) + v(x0, t0). Thus, for any 5 in [0, tQ] we

get

sq+ t0H{p) >0,

which implies, in particular, that q + H(p) > 0.    D

Remark. If we consider the natural extension of (1)

du/dt + H(t,Du) = 0    inR" x]0,r[,

u(x,0) = u0(x) inR\

then a natural extension of the Hopf formula is

(1')

(6') v(x,t) = sup l(x,z)-u*(z) - [' H(s,z) ds
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or

(7') v(x,t) - lu* + f H(s,-)ds)  (x).

But (6'),(7') do not define a viscosity solution of (1); indeed, if this were the case,

this formula would define an evolution operator and, by a density argument

(u* -* 0), we would have

[if H(X,-)dxY* + j'+s H(X,-)dx\   = U'+SH(\,-)d\Y

for all /, s > 0, and this is, in general, false!    D

II. Commutation of the semigroups. The Hopf formula sheds some light on a new

property of commutation of the semigroups:

Proposition 2. Ifu0, Hx, H2 are convex, continuous, and such that (8) holds for

Hx and H2, then we have for all positive t, s,

(n) SHl(t)SHl(s)u0 = SHi{s)SH¡(t)u0 = SlH¡ + íH2(l)u{).

Proof. SH¡(t)S„2(s)u0 = [(u* + sH2)** + ///,]*.

If H2 is convex this is equal to

S,/,1+1„2(1K= [u* + tHx+sH2\*.    D

It is easy to find a counterexample to (11) if Hx and H2 are not convex. On the

other hand, a reexamination of the Lax formula shows that the commutation

property can also be proved for u0 in BUC(RV) and convex continuous Hx and H2.

Proposition 3. Ifu0 e BUQR^) and Hx, H2 are convex, then (11) holds for any

positive t,s.

Proof. By the Oleinik-Lax formula we have

{SHl(t)SHl(s)u0)(x) «   Inf    Inf   {u0(y) +(tHx)*(x - z) +(sH2)*(z - y)}.

But

Inf UtHx)*(x - z)+(sH2)*(z-y)} = (///, + sH2)*(x-y).

Thus

{SHi(t)SHi(s)u0)(x) = {SIH¡ + Sfl2(l)u0)(x).   D

Remark. The same commutation property obviously holds for small t, if w0,

//,, H2 are smooth; indeed by the method of characteristics (see, for example, [8]) we

have the following: Let v = SlfI +sfi,(l)u0(x). Then for t, s small there exists a

unique xx in R^ such that

je, + tH{(Du0(xx)) + sH¡{Du0(xx)) = x,        DuQ(xx) = Dxv(x,t,s),

v(x,t,s) = u0(Xl) + t{Hi • Du0{xx) - Hx} +s{H¡- Du0(xx) - H2).
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Next if we set x2 = xx + tH((Du0(xx)), we have

Du0(xx) = Dx(Sff¡(t)u0)(x2), SH¡(t)u0(x2) = uQ(xx) + t{H{ ■ Du0(xx) - Hx),

and observing that x = x2 + sH2(Dx(SH(t)u0)(x2)), we conclude that

v(x, t,s) = SHi(s)SH (t)u0(x)    for small t, s > 0.

Still for small t, s, the same property would hold for general Hamiltonians Hx(x, p),

H2(x, p), provided we have

öHx    dH2      dHx    úH2

op      ox        ox      op

i.e., [Hx, H2] = 0 (Hx, H2 are in involution)!

III. Multitime equations. Problems arising in mathematical economics [10] lead to

the following Cauchy problem for what we call (by analogy) the multitime Hamil-

ton-Jacobi equation:

ou/dt + Hx{Du) = 0     inRN X[0,T]2,

(12) du/ds + H2(Du) = 0    inRN X[0,T]2,

u(x,0,0) = u0(x) inR^.

Notice that (12) is apparently an overdetermined system of p.d.e.'s.

As a consequence of Propositions 2 and 3, we obtain explicit formulae giving weak

solutions of (12).

Proposition 4. If u0 is convex on RN, u0, Hx, H2 are continuous and if (8) holds

for Hx and H2 then formula (13) defines a convex function v on RN X [0, T]2, solving

(12) a.e.

(13) v(x,t,s)= (u* + tHx + sH2)*.

Proposition 5. // u0 e BUC(R^), Hx, H2 are convex continuous, and if either

Du0 e L°°, or Hx, H2 are coercive, then

V= SHl(t)SH2(S)U0 = SH1(S)SH¡(í)U0 = SlW,+*//,(!) "()

is Lipschitz on RN X [e, T]2 for any e > 0 and solves (12) a.e.

Remarks, (i) In Proposition 4, for fixed t > 0, v is not, in general, a viscosity

solution of du/ds + H2(Du) = 0, although this is true in Proposition 5. However, in

both cases v = S/H +sHl(l)u0, and thus o is a viscosity solution on each half-line

connecting (0,0) with (t,s).

(ii) If u0, Hx, H2 are smooth (say W/2o°(R'v)), then we may apply the method of

characteristics (cf. Remark in §11), which yields that v = SH(t)SHfs)u0 is a smooth

solution of (12) provided T is small (T < T0(u0, Hx, H2)).

(iii) Except for these special cases, we do not know if (12) admits global solutions

for every Hx, H2, u0: A good tentative solution could be S!fJ +sH (l)u0, but we are

unable to decide if it solves (12) a.e.

(iv) Of course, Propositions 4-5 extend to an arbitrary number of times—that is,

m equations in R^ X [0, T]m involving m different Hamiltonians for a single

unknown function.
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