NONAMENABILITY AND BOREL PARADOXICAL
DECOMPOSITIONS FOR LOCALLY COMPACT GROUPS

ALAN L. T. PATTERSON

Abstract. We show that a locally compact group G is not amenable if and only if it
admits a Borel paradoxical decomposition.

In 1938 A. Tarski [7] proved the following remarkable theorem. Let G be a group
acting invertibly on a set X and A ⊂ X. Then there exists a positive, finitely additive,
G-invariant measure μ on X with μ(A) = 1 if and only if A does not admit a
paradoxical decomposition. Here, a subset B of X admits a paradoxical decomposi-
tion (p.d.) if there exists a partition A_1, ..., A_m, B_1, ..., B_n of B and elements
x_1, ..., x_m, y_1, ..., y_n of G such that both \{x_i A_i : 1 ≤ i ≤ m\} and \{y_i B_i : 1 ≤ i ≤ n\}
are partitions of B. (Thus, by using G-translates, we can “pack” two copies of B
into itself.) In the above circumstances it is convenient to say that A_i, B_i, x_i, y_i is a
p.d. (for B with respect to G). An immediate consequence of Tarski’s theorem is that
a (discrete) group G is not amenable if and only if G admits a p.d. This beautiful
result thus characterizes amenability directly in terms of translates of subsets of G
with no mention of invariant means or measures. Tarski’s proof uses a deep set-theo-
retic result of D. König [3]. Is there a simpler proof available?

A natural question, raised by W. R. Emerson, is the topological analogue of the
above non amenability theorem. Let G be a locally compact group. Let us say that G
admits a Borel p.d. if there exists a p.d. as above with every A_i, B_i a Borel subset of
G. The question then is: Is it true that G is not amenable if and only if G admits a
Borel p.d.? The object of this note is to show that the answer to this question is yes.

What about a topological analogue for Tarski’s theorem? The reader is referred to

Theorem. Let G be a locally compact group. Then G is not amenable if and only if G
admits a Borel p.d.

Proof. Trivially, if G admits a Borel p.d., then G is not amenable. Conversely,
suppose that G is not amenable. Since G is the (directed) union of its σ-compact,
open subgroups, there exists a σ-compact, nonamenable, open subgroup H of G.
Suppose that the result is true for H, and let A_i, B_i, x_i, y_i be a Borel p.d. for H as
above. Let T be a transversal for the right H-cosets in G. One readily checks that
A_i T, B_i T, x_i, y_i is a p.d. for G. To show that this p.d. is Borel, we need only show

Received by the editors November 28, 1984.
1980 Mathematics Subject Classification. Primary 43A07, 22D05.
that AT is Borel in G if A is Borel in H. This is obvious if A is open in H, since
then AT is open in G, and the result for general A follows by using the monotone
class lemma. (Note that if $\{C_n\}$ is a decreasing sequence of subsets of H, then
$\cap_{n=1}^{\infty} (C_n T) = (\cap_{n=1}^{\infty} C_n) T$.)

Thus G admits a Borel p.d., so we can suppose that $G = H$—i.e., G is σ-compact.

Since G is σ-compact, we can find a compact, normal subgroup K of G with G/K
separable. Since K is amenable and G is not amenable, we have G/K not amenable.
Let $Q: G \to G/K$ be the quotient map. If there exists a Borel p.d. involving sets $A_i,$
B_i, then, by considering $Q^{-1}(A_i), Q^{-1}(B_i)$, we see that G admits a Borel p.d. We can
therefore suppose that G is separable.

Let G_e be the identity component of G. Then G/G_e is totally disconnected, and so
contains a compact open subgroup L. Let $\Phi: G \to G/G_e$ be the quotient map and
$H = \Phi^{-1}(L)$. Then H is an almost connected, open and closed subgroup of G.
There are two cases to be considered.

(i) H is not amenable. A result of Rickert [5, 6] shows that there exists a discrete
subgroup F of H isomorphic to the free group F_2 on two generators. In particular, F
is closed in H. Now H is separable since G is, and a result of [4] yields a Borel cross
section B for the right F-cosets in H. Now F is, of course, not amenable, and so by
Tarski’s theorem, we can find a p.d. A'_i, B'_i, x_i, y_i for F. Then A'_iB, B'_iB, x_i, y_i is a
p.d. for H, and the p.d. is Borel since each A'_i, B'_i is countable and B is Borel. We
then produce a Borel p.d. for G as in the second paragraph of the present proof.

(ii) H is amenable. The group G acts on the discrete space G/H in the usual way.
We claim that there does not exist a G-invariant mean on $\ell_\infty(G/H)$. (Indeed,
following the usual line of argument in this context, if m were such a mean, and n
was a left invariant mean on the space $C(H)$ of bounded, continuous, complex-valued functions on H, then the map $\phi \to m(xH \to n((\phi x)|_H)), where $\phi x(y) =
\phi(xy)$ ($x, y \in G$), is a left invariant mean on $C(G)$, giving G amenable and, hence, a
contradiction.) By Tarski’s theorem we can find a p.d. A_i, B_i, x_i, y_i for G/H with
respect to G. Then A_iH, B_iH, x_i, y_i is a Borel p.d. for G, and we are finished.

REFERENCES

4. G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952),
101–139.
6. ________, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127
(1967), 221–232.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO, LONDON, CANADA N6A 5B7

Current address: Department of Mathematics, The Edward Wright Building, Dunbar Street, University
of Aberdeen, Aberdeen, Scotland, U.K.