Inner model operators and the continuum hypothesis
HTML articles powered by AMS MathViewer
- by Howard Becker
- Proc. Amer. Math. Soc. 96 (1986), 126-129
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813824-6
- PDF | Request permission
Abstract:
Assuming AD, every inner model operator satisfies the continuum hypothesis.References
- Howard Becker, Partially playful universes, Cabal Seminar 76β77 (Proc. Caltech-UCLA Logic Sem., 1976β77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp.Β 55β90. MR 526914
- A. Dodd and R. Jensen, The core model, Ann. Math. Logic 20 (1981), no.Β 1, 43β75. MR 611394, DOI 10.1016/0003-4843(81)90011-5
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Alexander S. Kechris, Donald A. Martin, and Robert M. Solovay, Introduction to $Q$-theory, Cabal seminar 79β81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp.Β 199β282. MR 730595, DOI 10.1007/BFb0071702
- William J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39 (1974), 57β66. MR 344123, DOI 10.2307/2272343
- Maurice Boffa, Dirk van Dalen, and Kenneth McAloon (eds.), Logic Colloquium β78, Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 567663
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Robert M. Solovay, The independence of DC from AD, Cabal Seminar 76β77 (Proc. Caltech-UCLA Logic Sem., 1976β77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp.Β 171β183. MR 526918
- John R. Steel, A classification of jump operators, J. Symbolic Logic 47 (1982), no.Β 2, 347β358. MR 654792, DOI 10.2307/2273146
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 126-129
- MSC: Primary 03E60; Secondary 03D80, 03E15, 03E45, 03E99, 04A30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813824-6
- MathSciNet review: 813824