## Definable automorphisms of $\mathcal {P}(\omega )/\mathrm {fin}$

HTML articles powered by AMS MathViewer

- by Boban Veliฤkoviฤ PDF
- Proc. Amer. Math. Soc.
**96**(1986), 130-135 Request permission

## Abstract:

We investigate definable automorphisms of $\mathcal {P}\left ( \omega \right )/{\text {fin}}$ and show that e.g. every Borel automorphism is trivial. The existence of nontrivial projective automorphisms is consistent and independent from ${\text {ZFC + CH}}$.## References

- Keith J. Devlin,
*Aspects of constructibility*, Lecture Notes in Mathematics, Vol. 354, Springer-Verlag, Berlin-New York, 1973. MR**0376351**, DOI 10.1007/BFb0059290 - Thomas Jech,
*Set theory*, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**506523** - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR**756630** - Richard Laver,
*Linear orders in $(\omega )^{\omega }$ under eventual dominance*, Logic Colloquium โ78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp.ย 299โ302. MR**567675** - Jan van Mill,
*An introduction to $\beta \omega$*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp.ย 503โ567. MR**776630** - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - Walter Rudin,
*Homogeneity problems in the theory of ฤech compactifications*, Duke Math. J.**23**(1956), 409โ419. MR**80902**
โ, - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955**, DOI 10.1007/978-3-662-21543-2 - Saharon Shelah,
*Can you take Solovayโs inaccessible away?*, Israel J. Math.**48**(1984), no.ย 1, 1โ47. MR**768264**, DOI 10.1007/BF02760522 - Robert M. Solovay,
*A model of set-theory in which every set of reals is Lebesgue measurable*, Ann. of Math. (2)**92**(1970), 1โ56. MR**265151**, DOI 10.2307/1970696

*Real and complex analysis*, McGraw-Hill, London, 1970.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 130-135 - MSC: Primary 03E35; Secondary 03E15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813825-8
- MathSciNet review: 813825