Abstract Nash manifolds
HTML articles powered by AMS MathViewer
- by M. Shiota
- Proc. Amer. Math. Soc. 96 (1986), 155-162
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813829-5
- PDF | Request permission
Abstract:
We prove that any abstract noncompact Nash manifold is ${C^\infty }$ diffeomorphic to the interior of some compact ${C^\infty }$ manifold with boundary, and conversely, that such an interior or a compact ${C^\infty }$ manifold admits infinitely many abstract Nash manifold structures. The last result is a generalization of [2], where the case of a torus is proved.References
- M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82–99. MR 176482, DOI 10.2307/1970384
- D. R. J. Chillingworth and J. Hubbard, A note on nonrigid Nash structures, Bull. Amer. Math. Soc. 77 (1971), 429–431. MR 276229, DOI 10.1090/S0002-9904-1971-12726-X
- Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 0436203
- Tadeusz Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 245–266. MR 412180
- John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405–421. MR 50928, DOI 10.2307/1969649 R. Palais, Equivariant real algebraic differential topology, Part I: Smoothness categories and Nash manifolds, Notes, Brandeis Univ., 1972.
- Masahiro Shiota, Classification of Nash manifolds, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 209–232 (English, with French summary). MR 723954
- M. Shiota and M. Yokoi, Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Amer. Math. Soc. 286 (1984), no. 2, 727–750. MR 760983, DOI 10.1090/S0002-9947-1984-0760983-2
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 155-162
- MSC: Primary 58A07
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813829-5
- MathSciNet review: 813829