A characterization of semispan of continua
HTML articles powered by AMS MathViewer
- by Edwin Duda
- Proc. Amer. Math. Soc. 96 (1986), 171-174
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813832-5
- PDF | Request permission
Abstract:
The main results of this paper are characterizations of semispan $\varepsilon ,\varepsilon \geqslant 0$, for those metric spaces which are atriodic hereditarily unicoherent continua. The results follow from Theorem 1 which gives conditions under which the union of two continua, each of semispan less than or equal to $\varepsilon$, has semispan less than or equal to $\varepsilon$.References
- James Francis Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), no. 1, 133–138. MR 722431, DOI 10.1090/S0002-9939-1984-0722431-3
- Maria Cuervo and Edwin Duda, A characterization of span zero, Houston J. Math. 12 (1986), no. 2, 177–182. MR 862035
- Edwin Duda and James Kell III, Two sum theorems for semispan, Houston J. Math. 8 (1982), no. 3, 317–321. MR 684158 E. Duda, A sum theorem for semispan of continua, Proc. of the Fifth Prague Topology Symposium (1981), Heldermann Verlag, Berlin, 1982, pp. 162-163.
- W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), no. 2, 99–107. MR 365516, DOI 10.4064/fm-77-2-99-107
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214. MR 179766, DOI 10.4064/fm-55-3-199-214
- A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45. MR 482680, DOI 10.4064/cm-37-1-35-45
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 171-174
- MSC: Primary 54F20; Secondary 54F50, 54F55
- DOI: https://doi.org/10.1090/S0002-9939-1986-0813832-5
- MathSciNet review: 813832