Primitive noncommutative Jordan algebras with nonzero socle
HTML articles powered by AMS MathViewer
- by Antonio Fernandez Lopez and Angel Rodriguez Palacios
- Proc. Amer. Math. Soc. 96 (1986), 199-206
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818443-3
- PDF | Request permission
Abstract:
Let $A$ be a nondegenerate noncommutative Jordan algebra over a field $K$ of characteristic $\ne 2$. Defining the socle $S(A)$ of $A$ to be the socle of the plus algebra ${A^ + }$, we prove that $S(A)$ is an ideal of $A$; then we prove that if $A$ has nonzero socle, $A$ is prime if and only if it is primitive, extending a result of Osborn and Racine [6] for the associative case. We also describe the prime noncommutative Jordan algebras with nonzero socle and in particular the simple noncommutative Jordan algebras containing a completely primitive idempotent. In fact we prove that a nondegenerate prime noncommutative Jordan algebra with nonzero socle is either (i) a noncommutative Jordan division algebra, (ii) a simple flexible quadratic algebra over an extension of the base field, (iii) a nondegenerate prime (commutative) Jordan algebra with nonzero socle, or (iv) a $K$-subalgebra of ${L_W}{(V)^{(\lambda )}}$ containing ${F_W}(V)$ or of $H{({L_V}(V), * )^{(\lambda )}}$ containing $H({F_V}(V), * )$ where in the first case $(V,W)$ is a pair of dual vector spaces over an associative division $K$-algebra $D$ and $\lambda \ne 1/2$ is a central element of $D$, and where in the second case $V$ is self-dual with respect to an hermitian inner product $(|),D$ has an involution $\alpha \to \bar \alpha$ and $\lambda \ne 1/2$ is a central element of $D$ with $\lambda + \bar \lambda = 1$.References
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, DOI 10.1090/S0002-9947-1948-0027750-7
- Leslie Hogben and Kevin McCrimmon, Maximal modular inner ideals and the Jacobson radical of a Jordan algebra, J. Algebra 68 (1981), no. 1, 155–169. MR 604300, DOI 10.1016/0021-8693(81)90291-X
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- Kevin McCrimmon, Noncommutative Jordan rings, Trans. Amer. Math. Soc. 158 (1971), 1–33. MR 310024, DOI 10.1090/S0002-9947-1971-0310024-7
- J. Marshall Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc. 251 (1979), 375–387. MR 531985, DOI 10.1090/S0002-9947-1979-0531985-4
- Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
- M. Slater, The socle of an alternative ring, J. Algebra 14 (1970), 443–463. MR 260817, DOI 10.1016/0021-8693(70)90094-3
- Kirby C. Smith, Noncommutative Jordan algebras of capacity two, Trans. Amer. Math. Soc. 158 (1971), 151–159. MR 277584, DOI 10.1090/S0002-9947-1971-0277584-6
- E. I. Zel′manov, Jordan division algebras, Algebra i Logika 18 (1979), no. 3, 286–310, 385 (Russian). MR 566787
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 199-206
- MSC: Primary 17A15; Secondary 16A68
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818443-3
- MathSciNet review: 818443