NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS
OVER VON NEUMANN REGULAR RINGS

L. N. VASERSTEIN

ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A
be an associative ring with 1 whose reduction modulo its Jacobson radical is
von Neumann regular. We obtain a complete description of all subgroups of
$GL_n A$, $n \geq 3$, which are normalized by elementary matrices.

1. Introduction. For any associative ring A with 1 and any natural number n,
let $GL_n A$ be the group of invertible n by n matrices over A and $E_n A$
the subgroup generated by all elementary matrices $x^{i,j}$, where $1 \leq i \neq j \leq n$
and $x \in A$.

In this paper we describe all subgroups of $GL_n A$ normalized by $E_n A$
for any von Neumann regular A, provided $n \geq 3$. Our description is standard (see Bass [1] and
Vaserstein [14, 16]): a subgroup H of $GL_n A$ is normalized by $E_n A$ if and only if
H is of level B for an ideal B of A, i.e. $E_n(A, B) \subset H \subset G_n(A, B)$. Here $G_n(A, B)$
is the inverse image of the center of $GL_n(A/B)$ (when $n \geq 2$, this center consists
of scalar invertible matrices over the center of the ring A/B) under the canonical
homomorphism $GL_n A \to GL_n(A/B)$ and $E_n(A, B)$ is the normal subgroup of $E_n A$
generated by all elementary matrices in $G_n(A, B)$ (when $n \geq 3$, the group $E_n(A, B)$
is generated by matrices of the form $(-y)^{i,j} x^{i,j} y^{j,i}$ with $x \in B, y \in A, 1 \leq i \neq j \leq n$,
see [14]).

Recall that a ring A is called von Neumann regular (see von Neumann [13],
Goodearl [7]) if for any z in A there is x in A such that $zxz = z$. Then every factor
ring and every ideal of A is also von Neumann regular.

In fact, to be more general, we assume that $A/\text{rad}(A)$ (rather than A) is von
Neumann regular, where rad means the Jacobson radical. For example, this as-
sumption holds for any Artinian ring A or for any commutative semilocal ring A.

THEOREM 1. Assume that $A/\text{rad}(A)$ is von Neumann regular and $n \geq 2$. Then
for any ideal B of A:

(a) $E_n(A, B)$ contains all matrices of the form $1_n + vu$, where v is an n-column
over A, u is an n-row over B, and $uv = 0$; in particular, $E_n(A, B)$ is normal in
$GL_n A$;

(b) $E_n(A, B) \supset [E_n A, G_n(A, B)]$; in particular, every subgroup of $GL_n A$
of level B is normalized by $E_n A$;

(c) if $n \geq 3$, we have $E_n(A, B) = [E_n A, E_n B] = [GL_n A, E_n(A, B)] = [E_n A, H]$
for any subgroup H of level B, where $E_n B$ is the subgroup of $G_n(A, B)$ generated
by elementary matrices;

Received by the editors February 13, 1985. Presented to the Society, April 21, 1985 at the
819th meeting.

1980 Mathematics Subject Classification. Primary 16A54, 18F25, 16A30.

1 Supported by National Science and Guggenheim Foundations.
(d) if A is von Neumann regular, we have $E_n B = E_n(A, B)$; if moreover, $n \geq 3$, we have $E_n B = [E_n B, E_n B]$.

Theorem 2. Assume that $A/\text{rad}(A)$ is von Neumann regular and $n \geq 3$. Then every subgroup H of $\text{GL}_n A$ normalized by $E_n A$ is of level B for some ideal B of A, i.e. $E_n(A, B) \subset H \subset G_n(A, B)$.

Note that a subgroup H of $\text{GL}_n A$, $n \geq 2$, cannot be of level B and of level B' for two distinct ideals B and B' of A. So the level B in Theorem 2 is unique.

Theorems 1 and 2 were proved by Dickson [2] when A is a field (the condition $n \geq 3$ in this case can be replaced by the condition $\text{card}(A) \geq 4$), by Dieudonné [3] when A is a division ring, by Klingenberg [10] when A is a commutative local ring, by Bass [1] when A satisfies the stable range condition $sr(A) \leq n - 1$, by Vaserstein [14] when central localizations of A satisfy this stable range condition (for example, when A is finite as module over its center) and $n \geq 3$, and by Vaserstein [16] when A is a Banach algebra. Theorem 2 is claimed by Golubchik [5, 6] under the additional condition that A/M is an Ore ring for every maximal ideal M of A.

Note that von Neumann regular rings A satisfying $sr(A) \leq 1$ are known as unit regular rings, see [7, 8, 9, 11, 12, 15].

2. Proof of Theorem 1(a). We write

$$v = (v_i) = \left(\begin{array}{c} v' \\ v_n \end{array} \right) \quad \text{and} \quad u = (u_j) = (u', u_n)$$

with v_i in A and u_j in B.

Case 1. $1 + v_n u_n \in \text{GL}_1 B$. We set \(d := 1 + v_n u_n \), \(d' := 1 + u_n v_n = 1 - v' u' \in \text{GL}_1 B \) (see [17, §2]) and $a = 1_{n-1} + v' u' - v' u_n d^{-1} v_n u' = 1_{n-1} + v' (1 - u_n d^{-1} v_n) u' = 1_{n-1} + v' d'^{-1} u'$. Then

$$1_n + vu = \left(\begin{array}{c} 1_{n-1} + v' u' \\ v' u_n \end{array} \right)$$

$$= \left(\begin{array}{c} 1_{n-1} \\ 0 \end{array} \right) \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right) \left(\begin{array}{c} 1_{n-1} \\ d^{-1} v_n u' \\ 1 \end{array} \right)$$

$$\in E_n B \left(\begin{array}{c} a \\ 0 \\ d \end{array} \right) E_n B.$$

We have to prove that \(\left(\begin{array}{c} a \\ 0 \\ d \end{array} \right) \in E_n(A, B) \).

Since $1 + u' v' d'^{-1} = d'^{-1}$, we have

$$\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{c} 1_{n-1} \\ u' \end{array} \right) \left(\begin{array}{cc} 1_{n-1} & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 1_{n-1} & 0 \\ 0 & 1 \end{array} \right)$$

$$\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{c} 1_{n-1} \\ v' \end{array} \right) \left(\begin{array}{cc} 1_{n-1} & 0 \\ 0 & d'^{-1} \end{array} \right)$$

$$\in E_n(A, B) \left(\begin{array}{c} 1_{n-1} \\ 0 \end{array} \right)$$.
By [17, §2],
\[
\begin{pmatrix}
1_{n-1} & 0 \\
0 & d^{-1}d
\end{pmatrix} \in E_n(A, B).
\]
So \(1_n + vu \in E_n(A, B)\) in Case 1.

Case 2. \(v_i \in \text{rad}(A)\) for some \(i\) with \(1 \leq i \leq n\). Since \(E_n(A, B)\) is normalized by all permutation matrices, we can assume that \(i = n\). Then \(1 + vnun \in GL_1 B\), so we are reduced to Case 1.

General case. We now use the condition that \(A/\text{rad}(A)\) is von Neumann regular, hence there is an \(x \in A\) such that \(vnxvn - vn \in \text{rad}(A)\). Then \(1 + vn(1 - xvn)un \in GL_1 B\), hence \(g := 1_n + v(1 - xvn)u \in GL_n B\) by Case 1.

Also we have
\[
(-vn_{-1}x)^n_{-1,n}(1_n + vxvnu)(vn_{-1}x)^n_{-1,n} = 1_n + ((-vn_{-1}x)^n_{-1,n}vu(vn_{-1}x)^n_{-1,n})(u(vn_{-1}x)^n_{-1,n})
\]
and
\[
((-vn_{-1}x)^n_{-1,n}vu,xvn_{-1})n_{-1,n} = vn_{-1}(1 - xvn)xvn = vn_{-1}x(vn - vnvn) \in \text{rad}(A),
\]
hence \(h := 1_n + vxvnw \in E_n(A, B)\) by Case 2 with \(i = n - 1\).

Therefore \(1_n + vu = gh \in E_n(A, B)\).

3. Proof of Theorem 1(b). It suffices to show that \([y^{i,j}, g] := y^{i,j}g(-y^{i,j}g^{-1}) \in E_n(A, B)\) for any elementary \(y^{i,j}\) in \(E_n A\) and any \(g \in G_n(A, B)\). Since \(E_n(A, B)\) is normalized by all permutation matrices, we can assume that \((i, j) = (1, n)\).

Then \([y^{i,j}, g] = y^{i,n}(1_n - vvw)\), where \(v = (v', v_n)\) is the first column of \(g\) and \(w = (w', w_n)\) is the last row of \(g^{-1}\), so \(vw = 0\).

As in the end of the previous section, we find \(x \in A\) such that \(vnxvn - vn \in \text{rad}(A)\), and we have \(h := 1_n - vxvnw \in E_n(A, B)\), hence
\[
[(xvn)^{1,n}, g] = (xvn)^{1,n}(1_n - vxvnw) \in E_n(A, B),
\]
i.e. \((xvn)^{1,n}\) and \(g\) commute modulo \(E_n(A, B)\).

To complete our proof, it suffices to show that \((1 - xvn)^{1,n}\) also commutes with \(g\) modulo \(E_n(A, B)\). We set \(u := -(1 - xvn)w = (u', u_n)\). Then
\[
[(1 - xvn)^{1,n}, g] = (1 - xvn)^{1,n}(1_n + vu),
\]
with \(vnun = vn(1 - xvn)w \in \text{rad}(B)\), hence \(d := 1 + vnun \in GL_1 B\). Also \(v_i \in B\) for \(i \geq 2\), \(u_j \in B\) for \(j \leq n - 1\) and \(v_i u_n + 1 \in B\).

We set \(d' := 1 + u_nvn = 1 - u'v' \in GL_1 B\) and \(a := 1_{n-1} + v'u' - v'u'd^{-1}v_nu' = 1_{n-1} + v'd^{-1}u'\). Then
\[
(1 - xvn)^{1,n}(1_n + vu) = (1 - xvn)^{1,n}\begin{pmatrix}
1_{n-1} & v'u'd^{-1} \\
0 & 1
\end{pmatrix}\begin{pmatrix}
a & 0 \\
0 & d
\end{pmatrix}\begin{pmatrix}
1_{n-1} & 0 \\
0 & d^{-1}v_nu' \\
1
\end{pmatrix} \in E_n B.
\]

Now, as in the previous section (see Case 1 there), we see that \((a, 0, 0) \in E_n(A, B)\).
(Note that \(u'\) is an \((n - 1)\)-row over \(B\).)
4. **Proof of Theorem 1(c).** In the view of Theorem 1(a), (b), we have only the inclusion \(E_n B \subset [E_n A, E_n B] \) to prove. But we have it for any ring \(A \) with 1 and any \(n \geq 3 \) by the formula \(x^{i,j} = [1^{i,k}, x^{k,j}] \), where \(1 \leq i \neq j \neq k \neq i \leq n \) and \(x \in B \).

5. **Proof of Theorem 1(d).** We want to prove first that \(E_n (A, B) = E_n B \), i.e. \(E_n B \) is normalized by every elementary matrix \(y^{i,j} \) in \(\text{GL}_n A \). Since \(E_n B \) is normalized by all permutation matrices, we can assume that \((i,j) = (1,2)\). It suffices to prove that \(h := (-y)^{1,2} y^{1,2} \in E_n B \) for every elementary matrix \(g \) in \(E_n B \). This is trivial (and true for an arbitrary ring \(A \)) unless \(g = z^{2,1} \) where \(z \in B \). In this case we can assume that \(n = 2 \).

Since \(A \) is von Neumann regular, \(z = zz z \) for some \(x \) in \(A \). We have

\[
 h = (-y)^{1,2} z^{2,1} y^{1,2} = (xyz - y)^{1,2}(y - xzy)^{1,2}(xzy)^{1,2}.
\]

But \((xyz)^{1,2} \in E_2 B \) and

\[
 (xyz - y)^{1,2} z^{2,1} (y - xzy)^{1,2} = \begin{pmatrix} 1 + (xz - 1)yz & 0 \\ z & 1 \end{pmatrix} = ((xz - 1)yzx)^{1,2} z^{2,1}(1 - xz)yz^{1,2} \in E_2 B.
\]

When \(n \geq 3 \), for any elementary \(z^{i,j} \) in \(E_n B \) we have \(z^{i,j} = [(zx)^{i,k}, z^{k,j}] \), where \(k \neq i, j \) and \(z = zz z \) with \(x \) in \(A \).

6. **Proof of Theorem 2.** Let \(H \) be a subgroup of \(\text{GL}_n A \) normalized by \(E_n A \), where \(n \geq 3 \). The condition that \(A/\text{rad}(A) \) is von Neumann regular will not be used in Cases 1–5 of Lemma 3 below or Lemma 4.

Lemma 3. If \(H \) is not central, then \(H \) contains an elementary matrix \(\not \in 1_n \).

Proof. Case 1. \(H \ni g = (g_{i,j}) \) such that \(g_{n,1} = 0 \) and \(g \) does not commute with some \(1^{k,1} \in E_n A \). Then \(H \) contains an elementary matrix \(\not \in 1_n \) by Vaserstein [14].

Case 2. \(H \ni h = (h_{i,j}) \) such that \(h_{n,2} \not \in 0 \) and \(h_{n,1} + h_{n,2} y = 0 \) for some \(y \) in \(A \). Then \(H \ni (-y)^{2,1} h z^{2,1} = g = (g_{i,j}) \) and \(g_{n,1} = h_{n,1} + h_{n,2} y = 0, g_{n,2} = h_{n,2} \not \in 0 \), so \([g, 1^{2,1}] \neq 1_n \). Thus, we are reduced to Case 1.

Case 3. \(H \) contains a noncentral \(g = (g_{i,j}) \) with \(g_{n,1} = 0 \). If \(g \) does not commute with some \(1^{k,1} \in E_n A \), we are done by Case 1. Otherwise, \(g \) is a scalar matrix: \(g_{i,j} = 0 = g_{i,j} - g_{j,i} \) for all \(i \neq j \). Since \(g \) does not belong to the center of \(\text{GL}_n A \), there is \(y \) in \(A \) such that \(yg_{i,1} \neq g_{1,i} y \). Then \([g, y^{1,2}] = (g_{1,1} y - yg_{2,2})^{1,2} \not \in 1_n \) is an elementary matrix in \(H \).

Case 4. \(H \) contains a noncentral \(h = (h_{i,j}) \) with \(h_{2,2} \in \text{GL}_1 A \). If \((h^{-1})_{n,1} = 0 \), we are done by Case 3 with \(g = h^{-1} \). Otherwise, \(H \ni (-1)^{1,2} h^{1,2} = (g_{i,j}) \) with \((g_{n,1}, g_{n,2}) = (h^{-1})_{n,1} (h_{2,1}, h_{2,2}) \), so we are reduced to Case 2.

Case 5. \(H \) contains a noncentral \(h = (h_{i,j}) \) with \(h_{n,2} = 0 \). Since \(f := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \in E_2 A \), we have \(f' := \begin{pmatrix} f & 0 \\ 0 & 1 \end{pmatrix} \in E_n A \) and \(g := f' h f'^{-1} \in H \).

Since \(g_{n,1} = h_{n,2} = 0 \), we are reduced to Case 3.

General case. We pick a noncentral \(h = (h_{i,j}) \) in \(H \) and find \(x \) in \(A \) such that \(z := h_{n,2} x h_{n,2} - h_{n,2} \in \text{rad}(A) \). We set \(p := 1 - h_{n,2} x \). If \(ph_{n,1} = 0 \), i.e. \(h_{n,1} - h_{n,2} x h_{n,1} = 0 \), then we are done by Case 5 or Case 2. Otherwise, the matrix
\[g = (g_{i,j}) := h^{-1}p^{1,n}h(-p)^{1,n} \in H \text{ is not central and } g_{2,2} = 1 + (h^{-1})_{2,1}ph_{n,2} = 1 - (h^{-1})_{2,1}e \in \text{GL}_1 A, \text{ so we are reduced to Case 4.} \]

Lemma 4. If \(H \ni x^i,j, \text{ where } x \in A, 1 \leq i \neq j \leq n, \text{ then } H \supset E_n(A,B), \text{ where } B \text{ is the (two-sided) ideal of } A \text{ generated by } x. \)

Proof. It follows easily from the identities \(y^{i,j}z^{i,j} = (y + z)^{i,j} \text{ and } [y^{i,j}, z^{i,k}] = (yz)^{i,k}, \) where \(1 \leq i \leq j \neq k \neq i \leq n \) and \(y, z \in A \) (we use here that \(n \geq 3; \) no conditions on \(A \) are needed).

Now we can conclude our proof of Theorem 2. By Lemma 4, there is an ideal \(B \) of \(A \) such that \(E_n(A,B) \) contains all elementary matrices in \(H. \) Consider the image \(H' \) of \(H \) in \(\text{GL}_n(A/B). \) Since the ring \((A/B)/\text{rad}(A) \) is a factor ring of \(A/\text{rad}(A), \) it is also von Neumann regular. Since \(H' \) is normalized by \(E_n(A/B) \) which is the image of \(E_nA, \) Lemma 3 applied to \(H' \) gives that either \(H' \) is central or \(H' \) contains an elementary matrix \((x')^{i,j}, \) where \(0 \neq x' \in A/B \) and \(1 \leq i \neq j \leq n. \) In the latter case, \(H \ni x^{i,j}g, \) where \(0 \neq x \in A, x' = x + B, \) and \(g \in \text{GL}_n(B). \) We pick an integer \(k \neq i, j \) in the interval \(1 \leq k \leq n. \) Then \(H \ni [x^{i,j}g, 1^{i,k}] = x^{i,k}1^{i,j}x^{j,i}((-1)^{j,k}g(-x)_{i,j}(-1)^{j,k}E_n(A,B) \subset x^{i,k}H \text{ by Theorem 1(b).} \) Therefore \(H \ni x^{i,k} \) which contradicts our choice of \(B. \)

Thus, \(H' \) is central in \(\text{GL}_n(A/B), \) i.e. \(H \subset G_n(A,B). \)

Remark. From the proof of Theorem 1(a) (see §2 above), it is clear that the group \(E_n(A,B) \) is generated by matrices of the form \((-y)^{j,i}x^{j,i}y^{j,i} \) with \(x \in B \) and \(y \in A, \) provided \(n \geq 2 \) and \(A/\text{rad}(A) \) is von Neumann regular. If \(n \geq 3, \) no restrictions on \(A \) are needed.

References

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 (Current address)

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540