## Real isomorphic complex Banach spaces need not be complex isomorphic

HTML articles powered by AMS MathViewer

- by J. Bourgain
- Proc. Amer. Math. Soc.
**96**(1986), 221-226 - DOI: https://doi.org/10.1090/S0002-9939-1986-0818448-2
- PDF | Request permission

## Abstract:

It is shown that complex Banach spaces may be isomorphic as real spaces and not as complex spaces. If $X$ is a complex Banach space, denote $\overline X$ the Banach space with same elements and norm as $X$ but scalar multiplication defined by $z \cdot x = \bar z \cdot x$ for $z \in {\mathbf {C}},x \in X$. If $X$ is a space of complex sequences, $\overline X$ identifies with the space of coordinate-wise conjugate sequences and its norm is given by ${\left \| x \right \|_{\overline X }} = {\left \| {\bar x} \right \|_X}$, where $\bar x = ({\bar z_1},{\bar z_2}, \ldots )$ for $x = ({z_1},{z_2}, \ldots )$. Obviously $X$ and $\overline X$ are isometric as real spaces. In this note, we prove that $X$ and $\overline X$ may not be linearly isomorphic (in the complex sense). The method consists in constructing certain finite dimensional spaces by random techniques.## References

- Bernard Beauzamy,
*Espaces d’interpolation réels: topologie et géométrie*, Lecture Notes in Mathematics, vol. 666, Springer, Berlin, 1978 (French). MR**513228** - Jöran Bergh and Jörgen Löfström,
*Interpolation spaces. An introduction*, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR**0482275** - T. Figiel, J. Lindenstrauss, and V. D. Milman,
*The dimension of almost spherical sections of convex bodies*, Acta Math.**139**(1977), no. 1-2, 53–94. MR**445274**, DOI 10.1007/BF02392234 - E. D. Gluskin,
*The diameter of the Minkowski compactum is roughly equal to $n$*, Funktsional. Anal. i Prilozhen.**15**(1981), no. 1, 72–73 (Russian). MR**609798**
W. B. Johnson and G. Schechtman, - Joram Lindenstrauss and Lior Tzafriri,
*Classical Banach spaces. II*, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR**540367**
S. Mazur and S. Ulam, - Stanisław J. Szarek,
*The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds*, Acta Math.**151**(1983), no. 3-4, 153–179. MR**723008**, DOI 10.1007/BF02393205
—, preprint.

*Embedding*$l_p^n$

*into*$l_1^n$, Acta Math.

**149**(1982), 77-85. N. Kalton, unpublished.

*Sur les transformations isometriques d’espaces vectoriels normes*, C. R. Acad. Sci. Paris

**194**(1932), 946-948.

## Bibliographic Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 221-226 - MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818448-2
- MathSciNet review: 818448