Real isomorphic complex Banach spaces need not be complex isomorphic
HTML articles powered by AMS MathViewer
- by J. Bourgain
- Proc. Amer. Math. Soc. 96 (1986), 221-226
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818448-2
- PDF | Request permission
Abstract:
It is shown that complex Banach spaces may be isomorphic as real spaces and not as complex spaces. If $X$ is a complex Banach space, denote $\overline X$ the Banach space with same elements and norm as $X$ but scalar multiplication defined by $z \cdot x = \bar z \cdot x$ for $z \in {\mathbf {C}},x \in X$. If $X$ is a space of complex sequences, $\overline X$ identifies with the space of coordinate-wise conjugate sequences and its norm is given by ${\left \| x \right \|_{\overline X }} = {\left \| {\bar x} \right \|_X}$, where $\bar x = ({\bar z_1},{\bar z_2}, \ldots )$ for $x = ({z_1},{z_2}, \ldots )$. Obviously $X$ and $\overline X$ are isometric as real spaces. In this note, we prove that $X$ and $\overline X$ may not be linearly isomorphic (in the complex sense). The method consists in constructing certain finite dimensional spaces by random techniques.References
- Bernard Beauzamy, Espaces d’interpolation réels: topologie et géométrie, Lecture Notes in Mathematics, vol. 666, Springer, Berlin, 1978 (French). MR 513228
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI 10.1007/BF02392234
- E. D. Gluskin, The diameter of the Minkowski compactum is roughly equal to $n$, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 72–73 (Russian). MR 609798 W. B. Johnson and G. Schechtman, Embedding $l_p^n$ into $l_1^n$, Acta Math. 149 (1982), 77-85. N. Kalton, unpublished.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367 S. Mazur and S. Ulam, Sur les transformations isometriques d’espaces vectoriels normes, C. R. Acad. Sci. Paris 194 (1932), 946-948.
- Stanisław J. Szarek, The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983), no. 3-4, 153–179. MR 723008, DOI 10.1007/BF02393205 —, preprint.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 221-226
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818448-2
- MathSciNet review: 818448