Large-time behavior of solutions to certain quasilinear parabolic equations in several space dimensions
HTML articles powered by AMS MathViewer
- by Patricia Bauman and Daniel Phillips
- Proc. Amer. Math. Soc. 96 (1986), 237-240
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818451-2
- PDF | Request permission
Abstract:
We consider the Cauchy problem, ${u_t} + {\text {div}}f(u) = \Delta u$ for $x \in {{\mathbf {R}}^n},t > 0$ with $u(x,0) = {u_0}(x)$. For $n = 1$, suppose $f'' > 0$ and $\smallint \left | {{u_0} - \phi } \right |dx < \infty$ where $\phi$ is piecewise constant and $\phi (x) \to {u^ + }({u^ - })$ as $x \to + \infty ( - \infty )$. A result of Il’in and Oleinik states that if $\phi (x - kt)$ is an entropy solution of ${u_t} + {\text {div}}f(u) = 0$, then $u(x,t)$ approaches a traveling wave solution, $\tilde u(x - kt)$, as $t \to \infty$, with $\tilde u(x) \to {u^ + }({u^ - })$ as $x \to + \infty ( - \infty )$. We give two examples which show that this result does not hold for $n \geqslant 2$.References
- Edward D. Conway, The formation and decay of shocks for a conservation law in several dimensions, Arch. Rational Mech. Anal. 64 (1977), no. 1, 47–57. MR 427850, DOI 10.1007/BF00280178
- V. D. Repnikov and S. D. Èĭdel′man, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Mat. Sb. (N.S.) 73 (115) (1967), 155–159 (Russian). MR 0212424
- A. M. Il′in and O. A. Oleĭnik, Behavior of solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk SSSR 120 (1958), 25–28 (Russian). MR 0101396
- S. N. Kružkov, First order quasilinear equations with several independent variables. , Mat. Sb. (N.S.) 81 (123) (1970), 228–255 (Russian). MR 0267257
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- A. I. Vol′pert, Spaces $\textrm {BV}$ and quasilinear equations, Mat. Sb. (N.S.) 73 (115) (1967), 255–302 (Russian). MR 0216338
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 237-240
- MSC: Primary 35B40; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818451-2
- MathSciNet review: 818451