## Polynomial hulls with convex sections and interpolating spaces

HTML articles powered by AMS MathViewer

- by Zbigniew Slodkowski
- Proc. Amer. Math. Soc.
**96**(1986), 255-260 - DOI: https://doi.org/10.1090/S0002-9939-1986-0818455-X
- PDF | Request permission

## Abstract:

Assume that $L \subset \partial D \times {{\mathbf {C}}^m}$ is compact and has convex vertical sections. Denote by $K$ its polynomially convex hull. It is shown that $K\backslash \partial D \times {{\mathbf {C}}^m}$, if nonempty, can be covered by graphs of analytic functions $f:D \to {{\mathbf {C}}^m}$. The proof is based on complex interpolation theory for families of finite-dimensional normed spaces.## References

- Herbert Alexander and John Wermer,
*On the approximation of singularity sets by analytic varieties*, Pacific J. Math.**104**(1983), no. 2, 263–268. MR**684289** - Herbert Alexander and John Wermer,
*Polynomial hulls with convex fibers*, Math. Ann.**271**(1985), no. 1, 99–109. MR**779607**, DOI 10.1007/BF01455798 - Bernard Aupetit,
*Analytic multivalued functions in Banach algebras and uniform algebras*, Adv. in Math.**44**(1982), no. 1, 18–60. MR**654547**, DOI 10.1016/0001-8708(82)90064-0 - R. R. Coifman, R. Rochberg, G. Weiss, M. Cwikel, and Y. Sagher,
*The complex method for interpolation of operators acting on families of Banach spaces*, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 123–153. MR**576042**
T. J. Ransford, - Zbigniew Słodkowski,
*Analytic set-valued functions and spectra*, Math. Ann.**256**(1981), no. 3, 363–386. MR**626955**, DOI 10.1007/BF01679703
—,

*Analytic multivalued functions*, Ph.D. Thesis, University of Cambridge, 1983.

*Analytic multifunctions*, $q$

*-plurisubharmonic functions and uniform algebras*(Proc. Conf. Banach algebras and several complex variables), F. Greenleaf and D. Gulick, editors, Contemp. Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1984, pp. 243-258. —,

*A generalization of Vesentini and Wermer’s theorems*. Rend. Sem. Mat. Univ. Padova (to appear).

## Bibliographic Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 255-260 - MSC: Primary 32E20; Secondary 46E99, 46M35
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818455-X
- MathSciNet review: 818455