COMPARISON THEOREMS FOR SECOND ORDER DIFFERENTIAL SYSTEMS

W. J. KIM

Abstract. Comparison theorems are proved for second order linear differential systems of the form \((R_i y')' + P_i y = 0\), where \(R_i\) and \(P_i\) are continuous \(n \times n\) matrices and \(R_i\) is invertible, \(i = 1, 2\).

Let \(R\) and \(P\) be \(n \times n\) matrices with real elements which are continuous and let \(R\) be invertible on an \(x\)-interval \([a, \omega]\). We shall consider the second-order vector differential equation

\[(E) \quad (R(x)y')' + P(x)y = 0.\]

If (E) has a nontrivial solution \(u\) satisfying \(u(b) = u'(c) = 0 [u'(b) = u(c) = 0]\) for some \(b\) and \(c\), \(a \leq b < c < \omega\), we define \(\eta(b) [\phi(b)]\) to be the infimum of \(\xi\), \(b \leq \xi < \omega\), such that there exists a nontrivial solution \(u\) of (E) satisfying \(u(b) = u'(\xi) = 0 [u'(b) = u(\xi) = 0]\). Otherwise, we put \(\eta(b) = \omega [\phi(b) = \omega]\). If \(\eta(b) < \omega [\phi(b) < \omega]\), then (E) has a nontrivial solution \(y\) such that \(y(b) = y'(\eta(b)) = 0 [y'(b) = y(\phi(b)) = 0]\). \(\phi(b)\) is called the right-hand focal point of \(b\). In recent years some authors have referred to \(\eta(b)\) as a focal point of \(b\); however, this appears to be inconsistent with the long-term usage of "focal" [13]. In Picone's terminology, \(\eta(b)\) is a right-hand pseudoconjugate of \(b\) and \(\phi(b)\) is a right-hand hemicontinuous to \(b\). We shall henceforth call \(\eta(b)\) the right-hand pseudoconjugate of \(b\).

Morse [11] was the first to obtain generalizations of the classical Sturm separation and comparison theorems for the second-order vector differential equations

\[(E_i) \quad (R_i(x)y')' + P_i(x)y = 0, \quad i = 1, 2,\]

where \(R_i\) and \(P_i\) are \(n \times n\) matrices with continuous and real elements and \(R_i\) is invertible on \([a, \omega]\), \(i = 1, 2\). Other comparison results of a different nature have been recently proved by Ahmad and Lazer [1–3] for the case \(R_i = I\), and also by others [6, 10, 14, 15] under various assumptions on \(R_i\) and \(P_i\). In [15] Tomastik also considered comparison theorems for the right-hand and left-hand focal points. It is to be noted that in most of these studies the case \(P_1 = P_2\) is specifically excluded.
Let \(\eta_i(b) \) be the right-hand pseudoconjugate [the right-hand focal point] of \(b \) for \((E_i), \ i = 1, 2 \). The purpose of this paper is to present theorems comparing \(\eta_1(b) \) and \(\eta_2(c) \), where \(b \) and \(c \) are not necessarily equal. For the special case \(R_1 = R_2, P_1 = P_2 \), these results become "separation theorems," from which we can further deduce that \(\eta_i(x) \) is a nondecreasing function of \(x \).

The Riccati equation technique \([5, 8, 9, 12]\) adapted to the second-order system (E) is used to establish the main theorems.

Theorem 1. Let \(b \) be a point on the interval \([a, \omega)\). Every nontrivial vector solution \(y \) of (E) with \(y(b) = 0 \) has the property that \(y'(x) \not= 0, b < x < \omega \), if and only if the matrix Riccati system

\[
S' = R^{-1} + SPS, \quad S(b) = 0,
\]

has a solution on \([b, \omega)\).

Proof. Let \(Y \) be the solution of the matrix system

\[
(R(x)Y')' + P(x)Y = 0, \quad Y(b) = 0, \quad Y'(b) = I.
\]

To prove the necessity, let \(a \) be an arbitrary nonzero constant vector. Then \(y(x) = Y(x)a \) is a nontrivial solution of (E) with \(y(b) = 0 \). Since \(y'(x) = Y'(x)a \not= 0, b < x < \omega \), we see that the determinant of \(Y'(x) \) does not vanish on \([b, \omega)\). Thus, \(Y' \) is invertible on \([b, \omega)\). Since \(R \) is also invertible on \([b, \omega)\), so is \(RY' \). Consequently, \(S = Y(RY')^{-1} \) is defined and continuously differentiable on \([b, \omega)\) and \(S(b) = 0 \). Differentiating \(S \), we obtain \(S' = R^{-1} + SPS \), which proves that \(S \) is a solution of (MR) on \([b, \omega)\).

For \(n \times n \) matrices \(A = (a_{ij}) \) and \(B = (b_{ij}) \), we write \(A \geq B \) if \(a_{ij} \geq b_{ij}, i, j = 1, \ldots, n \), and we define

\[
\int_b^x A(t) \, dt = \left(\int_b^x a_{ij}(t) \, dt \right).
\]

In order to prove the sufficiency, we require the following lemma.

Lemma 1. The matrix Riccati equation (MR) has a unique solution \(S \) on \(J = [b, \eta(b)) \). The solution \(S \) is continuously differentiable and nontrivial; furthermore, it is nonnegative on \(J \) if

\[
R^{-1}(x) \geq 0, \quad P(x) \geq 0, \quad b \leq x < \eta(b).
\]

Proof. If \(R^{-1} = (r_{ij}), P = (p_{ij}), \) and \(S = (s_{ij}) \), the system (MR) is equivalent to the system of \(n^2 \) first-order equations

\[
s'_{ij} = t_{ij} + \sum_{k=1}^n s_{ik} \sum_{l=1}^n p_{kl}s_{lj}, \quad s_{ij}(b) = 0,
\]

\(i, j = 1, 2, \ldots, n \). Evidently, the above system may be cast into a vector equation of the form

\[
s' = f(x, s), \quad s(b) = 0,
\]
where \(s \) and \(f \) are \(n^2 \)-dimensional vectors. The vector-valued function \(f \) is continuous on \(D = \{(x, s): x \in J, |s| < \infty\} \); indeed, it is continuously differentiable on \(D \) as a function of \(s \). Therefore, \(f(x, s) \) satisfies a Lipschitz condition with respect to \(s \) on any compact and convex subset of \(D \) (see, e.g., [4, p. 142]) and there exists a unique solution \(s \in C' \) of (2) on some interval \([b, c], b < c < \eta(b)\) [7, p. 10]. Hence, the matrix Riccati system (MR) has a unique solution \(S \), continuously differentiable on the interval \([b, c]\). Let \(c_1 = \sup\{c: (MR) \text{ has a unique solution on } [b, c], b < c < \eta(b)\} \), and let \(S^* \) be the unique solution of (MR) on \([b, c_1]\). Since the derivative of every nontrivial vector solution \(y \) of (E) with \(y(b) = 0 \) does not vanish on \([b, \eta(b)]\), it follows from the necessity of Theorem 1 that (MR) has a solution, say \(S^0 \), on \([b, \eta(b)]\); thus, \(S^* = S^0 \) on \([b, c_1]\) by the uniqueness of solutions. If \(c_1 < \eta(b) \), we may assume that \(S^* \) is defined on \([b, c_1]\) (by setting \(S^*(c_1) = \lim_{x \to c_1} S^*(x) = S^0(c_1) \), if necessary). The solution \(S^* \) may then be continued to a right neighborhood \([c_1, c_1 + \varepsilon], \varepsilon > 0, \) of \(c_1 \) [7, p. 15]. This implies that (MR) has a unique solution on \([b, c_1 + \varepsilon], \varepsilon > 0, \) contrary to the choice of \(c_1 \). Therefore, \(c_1 = \eta(b) \) and (MR) has a unique solution \(S \) on \(J \).

The solution \(S \) is continuously differentiable because \(R^{-1} \) and \(P \) are continuous. Furthermore, \(S \) is nontrivial because \(R^{-1} \neq 0 \)---\(R^{-1} \) is invertible on \([b, \eta(b)]\) and it cannot have zero rows or zero columns at any point of \([b, \eta(b)]\)—and it may be obtained as the uniform limit of the successive approximations \(\{S_k\} \) defined recursively by the formula

\[
S_0(x) = 0, \\
S_{k+1}(x) = \int_b^x R^{-1}(t) \, dt + \int_b^x S_k(t) P(t) S_k(t) \, dt, \\
k = 0, 1, \ldots, \text{ on some interval } [b, d], b < d < \eta(b) (\text{see, e.g., [7, p. 12]}).
\]

Due to the inequalities (1), \(S_k \geq 0 \) on \([b, d]\), \(k = 0, 1, \ldots, \) and therefore the uniform limit \(S \geq 0 \) on \([b, d]\). Let \(d_1 = \sup\{d: S \geq 0 \text{ on } [b, d], b < d < \eta(b)\} \). Then \(S \geq 0 \) on \([b, d_1]\). We shall prove that \(d_1 = \eta(b) \). If \(d_1 < \eta(b) \), then \(0 \leq S < \infty \) on \([b, d_1]\) by the continuity of \(S \). In this case, \(S \) may again be represented on some interval \([d_1, e], d_1 < e < \eta(b)\), as the uniform limit of the successive approximations

\[
S_0(x) = S(d_1) \geq 0, \\
S_{k+1}(x) = S(d_1) + \int_{d_1}^x R^{-1}(t) \, dt + \int_{d_1}^x S_k(t) P(t) S_k(t) \, dt, \\
k = 0, 1, \ldots, \text{Since } S_k \geq 0 \text{ on } [d_1, e], k = 0, 1, \ldots, \text{and } S \geq 0 \text{ on } [d_1, e]. \text{ We are thus led to the conclusion that } S \geq 0 \text{ on } [b, e], \text{ contrary to the choice of } d_1. \text{ Consequently, } d_1 = \eta(b) \text{ and } S \geq 0 \text{ on } [b, \eta(b)].
\]

Returning now to the proof of Theorem 1, we shall first prove that \(|Y'|, \text{ the determinant of } Y', \text{ does not vanish on } [b, \omega]\) if (MR) has a solution \(S \) on \([b, \omega]\). Since \(|Y'| \) is continuous and \(|Y'(\omega)| = 1 \text{ by (M)}\), \(|Y'| \) does not vanish on some right neighborhood \(N \) of the point \(b \), that is, \(Y' \) is invertible on \(N \). Since \(R \) is invertible, \(Y(RY')^{-1} \) is defined on \(N \) and satisfies (MR), as was shown earlier. Due to the uniqueness of solutions of the initial value problem (MR) proved in Lemma 1, we
have $S = Y(RY')^{-1}$ on N. Suppose that $|Y'|$ vanishes at some point on $[b, \omega)$: Let \tilde{x} be the first point to the right of b at which $|Y'|$ vanishes. Then there exists a nonzero constant vector β such that $Y'(\tilde{x})\beta = 0$. On the interval $[b, \tilde{x})$ we have $S = Y(RY')^{-1}$, which may be written as $SRY' = Y$; this equality is indeed valid on $[b, \tilde{x})$ because S, R, Y and Y' are continuous on $[b, \tilde{x})$. In particular, $S(\tilde{x})R(\tilde{x})Y'(\tilde{x})\beta = Y(\tilde{x})\beta = 0$. But this is absurd since $w = Y\beta$ is a nontrivial solution of (E) and it cannot satisfy the condition $w(\tilde{x}) = w'(\tilde{x}) = 0$. Therefore, $|Y'|$ cannot vanish on $[b, \omega)$.

If y is any nontrivial solution of (E) with $y(b) = 0$, then there exists a nonzero constant vector γ such that $y = Y\gamma$. Evidently, $y' = Y'\gamma \neq 0$ on $[b, \omega)$ because $|Y'| \neq 0$ on $[b, \omega)$. This completes the proof.

Another result we need for proving comparison theorems is a version of Lemma 3.2 [12], strengthened for the matrix Riccati systems

$$\text{(MR)}_i \quad S' = R_i^{-1} + SP_i S, \quad S(b) = 0, \quad i = 1, 2.$$

Lemma 2. Let R_i and P_i be $n \times n$ matrices with continuous and real elements and let R_i be invertible on an interval $[a, \omega)$, $i = 1, 2$. Assume that

$$0 \leq \int_b^x R_2^{-1}(t) \, dt \leq \int_b^x R_1^{-1}(t) \, dt, \quad 0 \leq P_2(x) \leq P_1(x), \quad b \leq x < \omega,$$

for some $b, a \leq b < \omega$. If there exists a nonnegative differentiable matrix S defined on $[b, \omega)$ satisfying the matrix inequality

$$S' \geq R_1^{-1} + SP_1 S, \quad S(b) = S_b \geq 0,$$

then the matrix differential equation

$$T' = R_2^{-1} + TP_2 T, \quad T(b) = T_b, \quad S_b \geq T_b \geq 0,$$

has a continuous solution $T \leq S$ on $[b, \omega)$.

Proof. The existence of T is proved by the iteration procedure

$$T_0(x) = S, \quad T_{k+1}(x) = T_b + \int_b^x R_2^{-1}(t) \, dt + \int_b^x T_k(t)P_2(t)T_k(t) \, dt,$$

$b \leq x \leq \omega$, $k = 0, 1, \ldots$ (cf. [12]). For $k = 0,$

$$0 \leq T_1(x) = T_b + \int_b^x R_2^{-1}(t) \, dt + \int_b^x S(t)P_2(t)S(t) \, dt$$

$$\leq S_b + \int_b^x R_1^{-1}(t) \, dt + \int_b^x S(t)P_1(t)S(t) \, dt \leq S(x) = T_0(x),$$

due to (3), (4), (5) and the nonnegativity of S; hence, T_1 is continuously differentiable and $0 \leq T_1 \leq T_0$ on $[b, \omega)$. From (6) we see that $T_{k+1} \geq 0$ if $T_k \geq 0$. Also, for $k = 0, 1, \ldots,$

$$T_{k+1}(x) - T_k(x) = \int_b^x \left[T_k(t)P_2(t)T_k(t) - T_{k-1}(t)P_2(t)T_{k-1}(t) \right] \, dt,$$

where the integrand is nonpositive if $0 \leq T_k \leq T_{k-1}$. Therefore, $0 \leq T_{k+1} \leq T_k$ if $0 \leq T_k \leq T_{k-1}$. Since $0 \leq T_1 \leq T_0$, the sequence of continuously differentiable matrices $\{T_k\}$ decreases monotonically and is bounded below by zero. Furthermore,
the sequence is equicontinuous on any compact subinterval \(K \) of \([b, \omega)\). To show this, let \(\|A\| \) be the norm of an \(n \times n \) matrix \(A = (a_{ij}) \) defined by \(\|A\| = \sum_{i,j=1}^{n} |a_{ij}|. \) Let \(M > 0 \) be a constant such that \(\|R_2^{-1}\|, \|P_2\|, \) and \(\|T_k\|, k = 0, 1, \ldots, \) are all bounded by \(M \) on \(K \). From (6),

\[
T_{k+1}(x_2) - T_{k+1}(x_1) = \int_{x_1}^{x_2} R_2^{-1}(t) \, dt + \int_{x_1}^{x_2} T_k(t) P_2(t) T_k(t) \, dt,
\]

\(x_1, x_2 \in K, \, k = 0, 1, \ldots \). Thus,

\[
\|T_{k+1}(x_2) - T_{k+1}(x_1)\| \leq \int_{x_1}^{x_2} \|R_2^{-1}(t)\| \, dt + \int_{x_1}^{x_2} \|T_k(t) P_2(t) T_k(t)\| \, dt \leq (M + M^3) |x_2 - x_1|, \quad x_1, x_2 \in K,
\]

\(k = 0, 1, \ldots, \), and this implies that the sequence \(\{T_k\} \) is equicontinuous on \(K \). Since it is also uniformly bounded on \(K \}, \{T_k\} \) converges uniformly on \(K \). The uniform limit \(T = \lim_{k \to \infty} T_k \) is a continuous solution of (5) and \(T \leq T_0 = S \) on \(K \). Since this conclusion holds for every compact subinterval of \([b, \omega)\), it holds for \([b, \omega)\).

We are now ready to prove a comparison theorem for \(\eta_i(x) \), the right-hand pseudoconjugate function of \((E_i) \), \(i = 1, 2 \), defined on \([a, \omega)\).

Theorem 2. Let \(b \) be a point on the interval \([a, \omega)\). If

\[
R_1^{-1}(x) > 0, \quad \int_{b}^{x} R_1^{-1}(t) \, dt \geq \int_{b}^{x} R_2^{-1}(t) \, dt \geq 0, \quad P_1(x) \geq P_2(x) \geq 0,
\]

\(b \leq x < \omega \), then \(\eta_1(b) \leq \eta_2(b) \). If the stronger condition

\[
R_1^{-1}(x) \geq R_2^{-1}(x) \geq 0, \quad P_1(x) \geq P_2(x) \geq 0,
\]

\(a \leq x < \omega \), holds, then \(\eta_1(b) \leq \eta_2(c), \, a \leq b \leq c < \omega \).

Proof. Every nontrivial solution \(y \) of \((E_i) \) with \(y(b) = 0 \) has the property that \(y' \neq 0 \) on \([b, \eta_1(b)]) \). Hence, the corresponding matrix Riccati equation \((MR_i) \) has a solution \(S \) on \([b, \eta_1(b)] \) by Theorem 1. The solution \(S \) is nontrivial and nonnegative on \([b, \eta_1(b)] \) by Lemma 1. According to (7) and Lemma 2, the matrix Riccati system \((MR_2) \) associated with \((E_2) \) has a continuous solution \(T \) on \([b, \eta_1(b)] \). Therefore, by Theorem 1, every nontrivial solution vector \(w \) of \((E_2) \) with \(w(b) = 0 \) has the property that \(w' \neq 0 \) on \([b, \eta_1(b)] \); consequently, \(\eta_1(b) \leq \eta_2(b) \).

If (8) holds and \(c \) is an arbitrary point of \([a, \omega)\), then

\[
\int_{c}^{x} R_1^{-1}(t) \, dt \geq \int_{c}^{x} R_2^{-1}(t) \, dt \geq 0, \quad a \leq c \leq x < \omega.
\]

For \(a \leq b \leq c < \eta_1(b) \), \((MR_1) \) has a nontrivial solution \(S \) which is continuous and nonnegative on \([b, \eta_1(b)] \) by Theorem 1 and Lemma 1. Applying Lemma 2 to the interval \([c, \eta_1(b)] \), we conclude that the system \(T' = R_2^{-1} + TP_2T, \, T(c) = 0 \), has a matrix solution \(T \) on \([c, \eta_1(b)] \). Again by Theorem 1, if \(\nu \) is any nontrivial solution of \((E_2) \) with \(\nu(c) = 0 \), then \(\nu' \) does not vanish on \([c, \eta_1(b)] \). Therefore, \(\eta_1(b) \leq \eta_2(c) \), \(a \leq b \leq c < \eta_1(b) \).

If, on the other hand, \(\eta_1(b) \leq c < \omega \), it is obvious that \(\eta_1(b) \leq \eta_2(c) \). This completes the proof.
When we put \(R_1 = R_2 = R \) and \(P_1 = P_2 = P \) in Theorem 2—many comparison theorems for the second-order systems \((E_i)\), \(i = 1, 2 \), fail to hold for this case—we obtain the following “separation theorem”: If \(R \) is invertible, \(R^{-1} \geq 0 \), and \(P > 0 \) on \([a, \omega)\), then the equation \((E)\) has no nontrivial solution \(y \) such that \(y(x) = y'(x) = 0 \), \(b \leq x_1 < x_2 < \eta(b) \), for any \(b, a \leq b < \omega \). This result is equivalent to the statement that \(\eta(x) \) is a nondecreasing function of \(x \) on \([a, \omega)\).

Let \(\phi_i(x) \) be the right-hand focal point of \(x \) for the equation \((E_i)\), \(i = 1, 2 \). There are analogous comparison results for \(\phi_i(x) \), \(i = 1, 2 \), which we summarize below.

Let \(U \) be the solution of the matrix system
\[
(R(x)U')' + P(x)U = 0, \quad U(b) = I, \quad U'(b) = 0,
\]
for some \(b, a \leq b < \omega \). Put \(V = -RU'U^{-1} \). If every nontrivial solution \(y \) of \((E)\) with \(y'(b) = 0 \) does not vanish on \([b, \omega)\), then \(U \) is invertible on \([b, \omega)\). Thus, \(V \) is defined on \([b, \omega)\) and satisfies thereon
\[
(MR') \quad V' = P + VR^{-1}V, \quad V(b) = 0.
\]
This proves the necessity part of the following theorem.

Theorem 3. Suppose that \(R \) and \(P \) are \(n \times n \) matrices with continuous and real elements and that \(R \) is invertible on an interval \([a, \omega)\). Let \(b \) be a point on \([a, \omega)\). Every nontrivial solution vector \(y \) of \((E)\) with \(y'(b) = 0 \) does not vanish on \([b, \omega)\) if and only if the matrix Riccati system \((MR')\) has a solution on \([b, \omega)\).

Sufficiency of this theorem may be proved in a manner similar to the corresponding proof of Theorem 1, using the following analogue of Lemma 1.

Lemma 3. The matrix Riccati equation \((MR')\) has a unique solution on \([b, \phi(b))\), which is continuously differentiable. The solution is nontrivial if \(P \neq 0 \) and it is nonnegative on \([b, \phi(b))\) if \(R^{-1}(x) \geq 0 \), \(P(x) \geq 0 \), \(b \leq x < \phi(b) \).

Using Theorem 3, Lemma 2 (with \(P_i \) and \(R_i^{-1} \) interchanged in (3), (4) and (5), \(i = 1, 2 \)) and Lemma 3, we can similarly prove the following comparison theorem for \(\phi_i(x) \).

Theorem 4. If, for some \(b, a \leq b < \omega \),
\[
P_1(x) \geq 0, \quad \int_b^x P_1(t) \, dt \geq \int_b^x P_2(t) \, dt \geq 0, \quad R_1^{-1}(x) \geq R_2^{-1}(x) \geq 0,
\]
\(b \leq x < \omega \), then \(\phi_2(b) \geq \phi_1(b) \). Moreover, if
\[
P_1(x) \geq P_2(x) \geq 0, \quad R_1^{-1}(x) \geq R_2^{-1}(x) \geq 0,
\]
\(a \leq x < c \), then \(\phi_2(c) \geq \phi_1(b) \), \(a \leq b \leq c < \omega \).

Putting \(P_1 = P_2 = P \) and \(R_1 = R_2 = R \) in Theorem 4, we again obtain a “separation theorem”, which is equivalent to the statement that \(\phi(x) \) is a nondecreasing function of \(x \).
REFERENCES

Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York 11794