COMPARISON THEOREMS FOR SECOND ORDER DIFFERENTIAL SYSTEMS

W. J. KIM

Abstract. Comparison theorems are proved for second order linear differential systems of the form $\left(R_i y' \right)' + P_i y = 0$, where R_i and P_i are continuous $n \times n$ matrices and R_i is invertible, $i = 1, 2$.

Let R and P be $n \times n$ matrices with real elements which are continuous and let R be invertible on an x-interval $[a, \omega)$. We shall consider the second-order vector differential equation

$$(E) \quad \left(R(x) y' \right)' + P(x) y = 0.$$

If (E) has a nontrivial solution v satisfying $v(b) = v'(c) = 0$ [$v'(b) = v(c) = 0$] for some b and c, $a \leq b < c < \omega$, we define $\eta(b)$ [$\phi(b)$] to be the infimum of ξ, $b \leq \xi < \omega$, such that there exists a nontrivial solution u of (E) satisfying $u(b) = u'(\xi) = 0$ [$u'(b) = u(\xi) = 0$]. Otherwise, we put $\eta(b) = \omega$ [$\phi(b) = \omega$]. If $\eta(b) < \omega$ [$\phi(b) < \omega$], then (E) has a nontrivial solution y such that $y(b) = y'(\eta(b)) = 0$ [$y'(b) = y(\phi(b)) = 0$]. $\phi(b)$ is called the right-hand focal point of b. In recent years some authors have referred to $\eta(b)$ as a focal point of b; however, this appears to be inconsistent with the long-term usage of “focal” [13]. In Picone’s terminology, $\eta(b)$ is a right-hand pseudoconjugate of b and $\phi(b)$ is a right-hand hemiconjugate to b. We shall henceforth call $\eta(b)$ the right-hand pseudoconjugate of b.

Morse [11] was the first to obtain generalizations of the classical Sturm separation and comparison theorems for the second-order vector differential equations

$$(E_i) \quad \left(R_i(x) y' \right)' + P_i(x) y = 0, \quad i = 1, 2,$$

where R_i and P_i are $n \times n$ matrices with continuous and real elements and R_i is invertible on $[a, \omega)$, $i = 1, 2$. Other comparison results of a different nature have been recently proved by Ahmad and Lazer [1–3] for the case $R_i = I$, and also by others [6, 10, 14, 15] under various assumptions on R_i and P_i. In [15] Tomastik also considered comparison theorems for the right-hand and left-hand focal points. It is to be noted that in most of these studies the case $P_1 = P_2$ is specifically excluded.
Let $\eta_i(b) [\phi_i(b)]$ be the right-hand pseudoconjugate [the right-hand focal point] of b for $(E_i), \ i = 1, 2$. The purpose of this paper is to present theorems comparing $\eta_1(b) [\phi_1(b)]$ and $\eta_2(c) [\phi_2(c)]$, where b and c are not necessarily equal. For the special case $R_1 = R_2, \ P_1 = P_2$, these results become "separation theorems," from which we can further deduce that $\eta_i(x) [\phi_i(x)]$ is a nondecreasing function of x.

The Riccati equation technique [5, 8, 9, 12] adapted to the second-order system (E) is used to establish the main theorems.

Theorem 1. Let b be a point on the interval $[a, \omega)$. Every nontrivial vector solution y of (E) with $y(b) = 0$ has the property that $y'(x) \neq 0, \ b \leq x < \omega$, if and only if the matrix Riccati system

\[
S' = R^{-1} + SPS, \quad S(b) = 0,
\]

has a solution on $[b, \omega)$.

Proof. Let Y be the solution of the matrix system

\[
(R(x)Y')' + P(x)Y = 0, \quad Y(b) = 0, \quad Y'(b) = I.
\]

To prove the necessity, let a be an arbitrary nonzero constant vector. Then $y(x) \equiv Y(x)a$ is a nontrivial solution of (E) with $y(b) = 0$. Since $y'(x) = Y'(x)a \neq 0, \ b \leq x < \omega$, we see that the determinant of $Y'(x)$ does not vanish on $[b, \omega)$. Thus, Y' is invertible on $[b, \omega)$. Since R is also invertible on $[b, \omega)$, so is RY'.

Consequently, $S \equiv Y(RY')^{-1}$ is defined and continuously differentiable on $[b, \omega)$ and $S(b) = 0$. Differentiating S, we obtain $S' = R^{-1} + SPS$, which proves that S is a solution of (MR) on $[b, \omega)$.

For $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, we write $A \geq B$ if $a_{ij} \geq b_{ij}, \ i, j = 1, \ldots, n$, and we define

\[
\int_b^x A(t) \, dt = \left(\int_b^x a_{ij}(t) \, dt \right).
\]

In order to prove the sufficiency, we require the following lemma.

Lemma 1. The matrix Riccati equation (MR) has a unique solution S on $J = [b, \eta(b))$. The solution S is continuously differentiable and nontrivial; furthermore, it is nonnegative on J if

\[
R^{-1}(x) \geq 0, \quad P(x) \geq 0, \quad b \leq x < \eta(b).
\]

Proof. If $R^{-1} = (t_{ij}), \ P = (p_{ij}),$ and $S = (s_{ij})$, the system (MR) is equivalent to the system of n^2 first-order equations

\[
s'_{ij} = t_{ij} + \sum_{k=1}^n s_{ik} \sum_{l=1}^n p_{kl}s_{lj}, \quad s_{ij}(b) = 0,
\]

$i, j = 1, 2, \ldots, n$. Evidently, the above system may be cast into a vector equation of the form

\[
s' = f(x, s), \quad s(b) = 0,
\]
where \(s \) and \(f \) are \(n^2 \)-dimensional vectors. The vector-valued function \(f \) is continuous on \(D = \{(x, s): x \in J, |s| < \infty \} \); indeed, it is continuously differentiable on \(D \) as a function of \(s \). Therefore, \(f(x, s) \) satisfies a Lipschitz condition with respect to \(s \) on any compact and convex subset of \(D \) (see, e.g., [4, p. 142]) and there exists a unique solution \(s \in C' \) of (2) on some interval \([b, c], b < c < \eta(b)\) [7, p. 10]. Hence, the matrix Riccati system (MR) has a unique solution \(S \), continuously differentiable on the interval \([b, c]\). Let \(c_1 = \sup \{ c: (MR) \) has a unique solution on \([b, c], b < c < \eta(b)\} \), and let \(S^* \) be the unique solution of (MR) on \([b, c_1]\). Since the derivative of every nontrivial vector solution \(y \) of (E) with \(y(b) = 0 \) does not vanish on \([b, \eta(b)]\), it follows from the necessity of Theorem 1 that (MR) has a solution, say \(S^0 \), on \([b, \eta(b)]\); thus, \(S^* = S^0 \) on \([b, c_1]\) by the uniqueness of solutions. If \(c_1 < \eta(b) \), we may assume that \(S^* \) is defined on \([b, c_1]\) (by setting \(S^*(c_1) = \lim_{x \to c_1} S^*(x) = S^0(c_1) \), if necessary). The solution \(S^* \) may then be continued to a right neighborhood \([c_1, c_1 + \epsilon], \epsilon > 0 \) of \(c_1 \) [7, p. 15]. This implies that (MR) has a unique solution on \([b, c_1 + \epsilon], \epsilon > 0 \), contrary to the choice of \(c_1 \). Therefore, \(c_1 = \eta(b) \) and (MR) has a unique solution \(S \) on \(J \).

The solution \(S \) is continuously differentiable because \(R^{-1} \) and \(P \) are continuous. Furthermore, \(S \) is nontrivial because \(R^{-1} \neq 0 - R^{-1} \) is invertible on \([b, \eta(b)]\) and it cannot have zero rows or zero columns at any point of \([b, \eta(b)]\)—and it may be obtained as the uniform limit of the successive approximations \(\{S_k\} \) defined recursively by the formula

\[
S_0(x) = 0, \\
S_{k+1}(x) = \int_b^x R^{-1}(t) \, dt + \int_b^x S_k(t) P(t) S_k(t) \, dt, \\
k = 0, 1, \ldots, \text{ on some interval } [b, d], \ b < d < \eta(b) \text{ (see, e.g., [7, p. 12]). Due to the inequalities (1), } S_k \geq 0 \text{ on } [b, d], \ k = 0, 1, \ldots, \text{ and therefore the uniform limit } S \geq 0 \text{ on } [b, d]. \text{ Let } d_1 = \sup \{ d: S \geq 0 \text{ on } [b, d], \ b < d < \eta(b) \}. \text{ Then } S \geq 0 \text{ on } [b, d_1]. \text{ We shall prove that } d_1 = \eta(b). \text{ If } d_1 < \eta(b), \text{ then } 0 \leq S < \infty \text{ on } [b, d_1] \text{ by the continuity of } S. \text{ In this case, } S \text{ may again be represented on some interval } [d_1, e], \ d_1 < e < \eta(b), \text{ as the uniform limit of the successive approximations}

\[
S_0(x) = S(d_1) \geq 0, \\
S_{k+1}(x) = S(d_1) + \int_{d_1}^x R^{-1}(t) \, dt + \int_{d_1}^x S_k(t) P(t) S_k(t) \, dt, \\
k = 0, 1, \ldots. \text{ Since } S_k \geq 0 \text{ on } [d_1, e], \ k = 0, 1, \ldots, S \geq 0 \text{ on } [d_1, e]. \text{ We are thus led to the conclusion that } S \geq 0 \text{ on } [b, e], \text{ contrary to the choice of } d_1. \text{ Consequently, } d_1 = \eta(b) \text{ and } S \geq 0 \text{ on } [b, \eta(b)].

Returning now to the proof of Theorem 1, we shall first prove that \(|Y'\), the determinant of \(Y'\), does not vanish on \([b, \omega]\) if (MR) has a solution \(S \) on \([b, \omega]\). Since \(|Y'\) is continuous and \(|Y'(b)| = 1 \text{ by (M), } |Y'| \) does not vanish on some right neighborhood \(N\) of the point \(b\), that is, \(Y'\) is invertible on \(N\). Since \(R\) is invertible, \(Y(RY')^{-1}\) is defined on \(N\) and satisfies (MR), as was shown earlier. Due to the uniqueness of solutions of the initial value problem (MR) proved in Lemma 1, we
have \(S = Y(RY')^{-1} \) on \(N \). Suppose that \(|Y'| \) vanishes at some point on \([b, \omega)\): Let \(\tilde{x} \) be the first point to the right of \(b \) at which \(|Y'| \) vanishes. Then there exists a nonzero constant vector \(\beta \) such that \(Y'(\tilde{x})\beta = 0 \). On the interval \([b, \tilde{x})\) we have \(S = Y(RY')^{-1} \), which may be written as \(SRY' = Y \); this equality is indeed valid on \([b, \tilde{x})\) because \(S, R, Y \) and \(Y' \) are continuous on \([b, \tilde{x})\). In particular, \(S(\tilde{x})R(\tilde{x})Y'(\tilde{x})\beta = Y(\tilde{x})\beta = 0 \). But this is absurd since \(w = Y\beta \) is a nontrivial solution of (E) and it cannot satisfy the condition \(w(\tilde{x}) = w'(\tilde{x}) = 0 \). Therefore, \(|Y'| \) cannot vanish on \([b, \omega)\).

If \(y \) is any nontrivial solution of (E) with \(y(b) = 0 \), then there exists a nonzero constant vector \(\gamma \) such that \(y = Y\gamma \). Evidently, \(y' = Y'\gamma \neq 0 \) on \([b, \omega)\) because \(|Y'| \neq 0 \) on \([b, \omega)\). This completes the proof.

Another result we need for proving comparison theorems is a version of Lemma 3.2 [12], strengthened for the matrix Riccati systems

\[(MR_i) \quad S' = R_i^{-1} + SP_iS, \quad S(b) = 0, \quad i = 1, 2. \]

Lemma 2. Let \(R_i \) and \(P_i \) be \(n \times n \) matrices with continuous and real elements and let \(R_i \) be invertible on an interval \([a, \omega)\), \(i = 1, 2 \). Assume that

\[(3) \quad 0 \leq \int_b^x R_i^{-1}(t) \, dt \leq \int_b^x R_1^{-1}(t) \, dt, \quad 0 \leq P_2(x) \leq P_1(x), \quad b \leq x < \omega, \]

for some \(b \), \(a \leq b < \omega \). If there exists a nonnegative differentiable matrix \(S \) defined on \([b, \omega)\) satisfying the matrix inequality

\[(4) \quad S' \geq R_1^{-1} + SP_1S, \quad S(b) = S_h \geq 0, \]

then the matrix differential equation

\[(5) \quad T' = R_2^{-1} + TP_2T, \quad T(b) = T_h, \quad S_h \geq T_h \geq 0, \]

has a continuous solution \(T \leq S \) on \([b, \omega)\).

Proof. The existence of \(T \) is proved by the iteration procedure

\[(6) \quad T_0(x) = S, \quad T_{k+1}(x) = T_h + \int_b^x R_2^{-1}(t) \, dt + \int_b^x T_k(t)P_2(t)T_k(t) \, dt, \]

\(b \leq x \leq \omega \), \(k = 0, 1, \ldots \) (cf. [12]). For \(k = 0 \),

\[0 \leq T_1(x) = T_h + \int_b^x R_2^{-1}(t) \, dt + \int_b^x S(t)P_2(t)S(t) \, dt \leq S_h + \int_b^x R_1^{-1}(t) \, dt + \int_b^x S(t)P_1(t)S(t) \, dt \leq S(x) = T_0(x), \]

due to (3), (4), (5) and the nonnegativity of \(S \); hence, \(T_1 \) is continuously differentiable and \(0 \leq T_1 \leq T_0 \) on \([b, \omega)\). From (6) we see that \(T_{k+1} \geq 0 \) if \(T_k \geq 0 \). Also, for \(k = 0, 1, \ldots \),

\[T_{k+1}(x) - T_k(x) = \int_b^x [T_k(t)P_2(t)T_k(t) - T_{k-1}(t)P_2(t)T_{k-1}(t)] \, dt, \]

where the integrand is nonpositive if \(0 \leq T_k \leq T_{k-1} \). Therefore, \(0 \leq T_{k+1} \leq T_k \) if \(0 \leq T_k \leq T_{k-1} \). Since \(0 \leq T_1 \leq T_0 \), the sequence of continuously differentiable matrices \(\{ T_k \} \) decreases monotonically and is bounded below by zero. Furthermore,
the sequence is equicontinuous on any compact subinterval \(K \) of \([b, \omega)\). To show this, let \(\|A\| \) be the norm of an \(n \times n \) matrix \(A = (a_{ij}) \) defined by \(\|A\| = \sum_{i,j=1}^n |a_{ij}| \). Let \(M > 0 \) be a constant such that \(\|R_2^{-1}\|, \|P_2\|, \) and \(\|T_k\|, k = 0,1, \ldots \) are all bounded by \(M \) on \(K \). From (6),

\[
T_{k+1}(x_2) - T_{k+1}(x_1) = \int_{x_1}^{x_2} R_2^{-1}(t) \, dt + \int_{x_1}^{x_2} T_k(t)P_2(t)T_k(t) \, dt,
\]

\(x_1, x_2 \in K, \ k = 0,1, \ldots \). Thus,

\[
\|T_{k+1}(x_2) - T_{k+1}(x_1)\| \leq \int_{x_1}^{x_2} \|R^{-1}(t)\| |dt| + \int_{x_1}^{x_2} \|T_k(t)P_2(t)T_k(t)\| |dt| \leq (M + M^3)|x_2 - x_1|, \quad x_1, x_2 \in K,
\]

\(k = 0,1, \ldots \), and this implies that the sequence \(\{T_k\} \) is equicontinuous on \(K \). Since it is also uniformly bounded on \(K \), \(\{T_k\} \) converges uniformly on \(K \). The uniform limit \(T = \lim_{k \to \infty} T_k \) is a continuous solution of (5) and \(T \leq T_0 = S \) on \(K \). Since this conclusion holds for every compact subinterval of \([b, \omega)\), it holds for \([b, \omega)\).

We are now ready to prove a comparison theorem for \(\eta_i(x) \), the right-hand pseudoconjugate function of \((E_i) \), \(i = 1,2 \), defined on \([a, \omega)\).

Theorem 2. Let \(b \) be a point on the interval \([a, \omega)\). If

\[
(7) \quad R_1^{-1}(x) > 0, \quad \int_h^x R_1^{-1}(t) \, dt \geq \int_h^x R_2^{-1}(t) \, dt \geq 0, \quad P_1(x) \geq P_2(x) \geq 0,
\]

\(b \leq x < \omega \), then \(\eta_1(b) \leq \eta_2(b) \). If the stronger condition

\[
(8) \quad R_1^{-1}(x) > R_2^{-1}(x) > 0, \quad P_1(x) \geq P_2(x) \geq 0,
\]

\(a \leq x < c < \omega \), holds, then \(\eta_1(b) \leq \eta_2(c) \), \(a \leq b \leq c < \omega \).

Proof. Every nontrivial solution \(y \) of \((E_1) \) with \(y(b) = 0 \) has the property that \(y' \neq 0 \) on \([b, \eta_1(b))\). Hence, the corresponding matrix Riccati equation \((MR_1) \) has a solution \(S \) on \([b, \eta_1(b))\) by Theorem 1. The solution \(S \) is nontrivial and nonnegative on \([b, \eta_1(b))\) by Lemma 1. According to (7) and Lemma 2, the matrix Riccati system \((MR_2) \) associated with \((E_2) \) has a continuous solution \(T \) on \([b, \eta_1(b))\). Therefore, by Theorem 1, every nontrivial solution vector \(w \) of \((E_2) \) with \(w(b) = 0 \) has the property that \(w' \neq 0 \) on \([b, \eta_1(b))\); consequently, \(\eta_1(b) \leq \eta_2(b) \).

If (8) holds and \(c \) is an arbitrary point of \([a, \omega)\), then

\[
\int_c^x R_1^{-1}(t) \, dt \geq \int_c^x R_2^{-1}(t) \, dt \geq 0, \quad a \leq c \leq x < \omega.
\]

For \(a \leq b \leq c < \eta_1(b) \), \((MR_1) \) has a nontrivial solution \(S \) which is continuous and nonnegative on \([b, \eta_1(b))\) by Theorem 1 and Lemma 1. Applying Lemma 2 to the interval \([c, \eta_1(b))\), we conclude that the system \(T' = R_2^{-1} + TP_2T \), \(T(c) = 0 \), has a matrix solution \(T \) on \([c, \eta_1(b))\). Again by Theorem 1, if \(\nu \) is any nontrivial solution of \((E_2) \) with \(\nu(c) = 0 \), then \(\nu' \) does not vanish on \([c, \eta_1(b))\). Therefore, \(\eta_1(b) \leq \eta_2(c) \), \(a \leq b \leq c < \eta_1(b) \).

If, on the other hand, \(\eta_1(b) \leq c < \omega \), it is obvious that \(\eta_1(b) \leq \eta_2(c) \). This completes the proof.
When we put $R_1 = R_2 = R$ and $P_1 = P_2 = P$ in Theorem 2—many comparison theorems for the second-order systems (E_i), $i = 1, 2$, fail to hold for this case—we obtain the following “separation theorem”: If R is invertible, $R^{-1} \geq 0$, and $P \geq 0$ on $[a, \omega)$, then the equation (E) has no nontrivial solution y such that $y(x_1) = y'(x_2) = 0$, $b \leq x_1 \leq x_2 < \eta(b)$, for any b, $a \leq b < \omega$. This result is equivalent to the statement that $\eta(x)$ is a nondecreasing function of x on $[a, \omega)$.

Let $\phi_i(x)$ be the right-hand focal point of x for the equation (E_i), $i = 1, 2$. There are analogous comparison results for $\phi_i(x)$, $i = 1, 2$, which we summarize below.

Let U be the solution of the matrix system

$$
\begin{align*}
(R(x)U')' + P(x)U &= 0, \\
U(b) &= I, \\
U'(b) &= 0,
\end{align*}
$$

for some b, $a \leq b < \omega$. Put $V = -RU'U^{-1}$. If every nontrivial solution y of (E) with $y'(b) = 0$ does not vanish on $[b, \omega)$, then U is invertible on $[b, \omega)$. Thus, V is defined on $[b, \omega)$ and satisfies thereon

$$(MR') \quad V' = P + VR^{-1}V, \quad V(b) = 0.$$

This proves the necessity part of the following theorem.

Theorem 3. Suppose that R and P are $n \times n$ matrices with continuous and real elements and that R is invertible on an interval $[a, \omega)$. Let b be a point on $[a, \omega)$. Every nontrivial solution vector y of (E) with $y'(b) = 0$ does not vanish on $[b, \omega)$ if and only if the matrix Riccati system (MR') has a solution on $[b, \omega)$.

Sufficiency of this theorem may be proved in a manner similar to the corresponding proof of Theorem 1, using the following analogue of Lemma 1.

Lemma 3. The matrix Riccati equation (MR') has a unique solution on $[b, \phi(b))$, which is continuously differentiable. The solution is nontrivial if $P \neq 0$ and it is nonnegative on $[b, \phi(b))$ if $R^{-1}(x) \geq 0$, $P(x) \geq 0$, $b \leq x < \phi(b)$.

Using Theorem 3, Lemma 2 (with P_i and R_i^{-1} interchanged in (3), (4) and (5), $i = 1, 2$) and Lemma 3, we can similarly prove the following comparison theorem for $\phi_i(x)$.

Theorem 4. If, for some b, $a \leq b < \omega$,

$$
P_1(x) \geq 0, \quad \int_b^x P_1(t) \ dt \geq \int_b^x P_2(t) \ dt \geq 0, \quad R_1^{-1}(x) \geq R_2^{-1}(x) \geq 0,$$

$b \leq x < \omega$, then $\phi_2(b) \geq \phi_1(b)$. Moreover, if

$$
P_1(x) \geq P_2(x) \geq 0, \quad R_1^{-1}(x) \geq R_2^{-1}(x) \geq 0,$$

$a \leq x < \omega$, then $\phi_2(c) \geq \phi_1(b)$, $a \leq b \leq c < \omega$.

Putting $P_1 = P_2 = P$ and $R_1 = R_2 = R$ in Theorem 4, we again obtain a “separation theorem”, which is equivalent to the statement that $\phi(x)$ is a nondecreasing function of x.

REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11794